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Abstract

This work elaborates the connection between prediction and description in regression analysis. Many
empirical studies aim at description, which requires a valid regression model. I show that regression
models with a strong prediction power can be highly invalid and thus be inappropriate for the purpose
of description. Conversely, valid regression models may have a weak prediction power and they even
need not fit at all. For this reason, measures of prediction power, or of goodness of fit, are not suitable
for assessing the validity of regression models. I develop a simple validity test, which can be applied to
all types of regression models with any number of regressors. It is very powerful in large samples and
performs very well also in small samples, given that the validity of the regression model is sufficiently
low and that there is not too much noise in the true regression equation.
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1. Motivation

LINEAR regression is probably the most widely used method of data analysis in economics

and it is the main subject of classical econometrics. Among many other scientific areas,

it is frequently applied in social and natural sciences, too. We can achieve two goals

with regression analysis, namely prediction and description.1 Prediction requires no structural

assumption about the regression equation Y = f (X) + ε, where Y represents the dependent

variable, f is the regression function, X is some vector of regressors, and ε is the regression

error. Thus, prediction does not force us to specify any probabilistic model. Quite the contrary,

description is based on the fundamental assumption that the regression model Y = f (X) + ε is

valid, i.e., that f (X) corresponds the conditional mean of Y given X.

Many, if not most, empirical studies try to describe the impact of X on Y rather than to predict

Y by a (linear or nonlinear) regression on X. Nonetheless, those studies often try to legitimate

their regression model Y = f (X) + ε by demonstrating its capability to predict Y. Thus, it seems

that description is often confused with prediction. Indeed, a regression model may very well

have a strong prediction power and it can also possess a good fit, i.e., be accurate in explaining

the distribution of Y, but the same model can still be invalid—even to a very high degree.

In that case, it is completely unsuitable for the purpose of description. Conversely, a valid

regression model Y = f (X) + ε can have a weak prediction power and f (X) even need not fit

to Y at all. However, then f is the only regression function that describes the impact of X on

Y, appropriately. This problem becomes even more serious when model selection is based on

measures of prediction power or of goodness of fit rather than validity.

Here, it is shown that even an optimal predictor f (X) of Y need not constitute a valid regression

model Y = f (X) + ε, whereas the opposite is true. To be more precise, a valid regression model

Y = f (X) + ε must always be based on an optimal predictor f (X) of Y. Simply put, optimality

is a necessary, but not a sufficient condition for validity. This seems to be often misunderstood

in practice, and common specification tests do not test for validity at all. Regression analysis

plays a significant role in empirical research, and validity is a conditio sine qua non in most

applications. Hence, the given problem is relevant from a practical point of view. This work

contains some new and surprising insights about the question of validity, which hopefully are

interesting for the audience. Thus, I think that it is relevant from a theoretical perspective, too.

Whether or not a regression model is valid can very well depend on the choice of regressors,

which means that also the choice of their transformation can have an essential impact on

the validity of the model. However, genuine validity tests or measures can rarely be found

in the literature. Here, I do not mean the usual goodness-of-fit tests like the ordinary R2 or

Theil’s adjusted R2, hypothesis tests concerning linear- or artificial-regression parameters, or

information criteria like the Akaike or the Bayesian information criterion, etc.2 Actually, such

tests and measures do not address the question of validity. They focus on prediction rather than

1Some authors distinguish between prediction and control (see, e.g., Fomby et al., 1984, p. 400).
2For a discussion of such measures see, e.g., Amemiya (1980) and Desboulets (2018).
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description. Further, many tests are based on the classical assumptions of the Gaussian linear

model, which are very restrictive and hardly applicable in most real-life situations. Sometimes,

also a visual inspection of the regression errors is recommended to assess validity, but these

procedures are insufficient, too. This will be demonstrated later in this work.

The main purpose of this work is (i) to draw attention to the fundamental problem of validity

and (ii) to present a genuine validity test. The test is simple and thus easy to implement. More

importantly, it can be applied to all types of regression models with any number of regressors.

The validity test is very powerful in large samples and performs well also in small samples,

provided that the validity of the regression model is sufficiently low and that there is not too

much noise in the true regression equation. If the test rejects the null hypothesis of validity, the

given regression model is (significantly) invalid and so it should be abandoned. Put another

way, we should consider another regression model or, at least, change or transform the variables.

However, this holds true only if we want to describe the impact of X on Y by some regression

model Y = f (X) + ε. By contrast, if we wish to predict Y by X, the regression model may very

well be invalid, and we should focus instead on the prediction power of f (X).

2. Theoretical Background

2.1. Prerequisites

The elements of Euclidean space are considered column vectors. Random variables and random

vectors are always denoted by capital Roman letters. The same is true for subsets of Euclidean

space and real-valued matrices. A small Roman letter indicates a real number, an Euclidean

vector, or a function. For example, X = (X1, . . . , Xm) is an m-dimensional random vector,

whereas x = (x1, . . . , xm) ∈ Rm represents some realization of X. By contrast,
{

X1, . . . , Xm
}

denotes a set of m random variables or random vectors X1, . . . , Xm. A small Greek letter can

either be a random variable, a real number, an Euclidean vector, or a function. An equality or

inequality between two (random) vectors means that the assertion holds true componentwise

(and almost surely). Let X be an m-dimensional and Y be an n-dimensional random vector.

Then, Cov(X, Y) denotes the (m × n) matrix of covariances between X and Y, whereas Var(X)

is the (m × m) covariance matrix of X. Further, Var(X) > 0 means that the covariance matrix

of X is positive definite. The transpose of X is denoted by X′, 0 symbolizes the zero scalar or a

vector of zeros, depending on the given context. The same is true for the symbol 1, respectively.

The rank of a (random or real-valued) matrix A is written as rk A.

Moreover, ∧ stands for the logical “and,” := means “is defined as,” Id is the d × d identity

matrix, and 1 is the indicator function, i.e., 1A = 1 if A is true and 1A = 0 if A is false. The

d-dimensional normal distribution with mean vector µ and covariance matrix Σ is symbolized by

Nd(µ, Σ), where the index d is dropped and Σ is substituted with σ2 in the case of d = 1. Further,

tν denotes Student’s t-distribution with ν degrees of freedom, χ2
δ is the χ2-distribution with δ

degrees of freedom, and Fν
δ represents the F-distribution with ν numerator and δ denominator

degrees of freedom. Strong convergence, i.e., convergence with probability 1, is simply denoted

4
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by →, whereas weak convergence, i.e., convergence in distribution, is indicated by⇝. The

additional remark “n → ∞,” i.e., that the sample size tends to infinity, is omitted for notational

convenience. The symbol Φ denotes the cumulative distribution function of the standard normal

distribution, whereas ϕ is its probability density function. Finally, if (x, y) 7→ f (x, y) is a real-

valued differentiable function of x ∈ A ⊆ Rk and y ∈ B ⊆ Rl , then ∂
∂x f (· , y) represents the

partial derivative of f with respect to x given y, whereas ∂
∂y f (x, ·) is defined mutatis mutandis.

Now, let (Ω,A, P) be a probability space, where A is a σ-algebra on Ω, and let L2 be the

Hilbert space of all square-integrable random variables, equipped with the inner product

E(XY) for all X, Y ∈ L2. Let X1, . . . , Xm, Y ∈ L2 be some random variables and (X, Y) with

X = (X1, . . . , Xm) be the corresponding (m+ 1)-dimensional random vector. It is tacitly assumed

that the covariance matrix of (X, Y) is positive definite unless there is something to the contrary.3

Further, let D ⊆ Rm be some (Borel) set such that P(X ∈ D) = 1 and f be a regression function,

i.e., any real-valued function on D such that f (X) ∈ L2. Two regression functions f̂ and f̃ are

considered identical if and only if f̂ (X) = f̃ (X).

The corresponding regression equation is given by

Y = f (X) + ε, (1)

where the m components of X are called explanatory variables or regressors, and Y is referred

to as the response or dependent variable.4 The given set of regressors, i.e.,
{

X1, . . . , Xm
}

, is

denoted by S . Moreover, the regressors X1, . . . , Xm and the dependent variable Y are considered

fixed. This implies that they do not depend on the choice of the regression function f .5

The regression error is defined by ε := Y − f (X). Hence, ε represents a residual, i.e., it is not

considered fixed, and thus it is not treated like a regressor. However, for notational convenience,

I usually refrain from using some index in order to clarify that ε depends on Y, X, and f .

Equation 1 is always satisfied just by the very definition of ε, irrespective of how we choose

the dependent variable Y, the regressors X1, . . . , Xm, and the regression function f . Put another

way, if we do not make any assumption about the joint distribution of X and ε, Equation 1 is

purely tautological. Consequently, it does not represent a model—apart from the very fact that

the surrounding framework is just a probabilistic model of reality.

3This implies that Var(X) > 0 and Var(Y) > 0.
4The dependent variable, Y, can be called also regressand (Greene, 2012, p. 52), but this term is not commonly used.
Further, I do not call the components of X independent, since they usually depend on each other and also on Y.

5A counterexample is Y = α + βX + ε with X = βZ, where Z ∈ L2 is a fixed random variable.
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2.2. Main Goals of Regression Analysis

2.2.1. Prediction

Let G ̸= ∅ be the set of all regression functions and F be a nonempty subset of G. To predict Y
by X, one typically tries to find an element of F that minimizes the mean square prediction error

E(ε2) = E
((

Y − f (X)
)2
)

.

Thus, f (X) is called an optimal predictor of Y if and only if f minimizes E(ε2) among all

regression functions in F . Consequently, f ∈ F is said to be optimal if and only if f (X) is an

optimal predictor of Y. In general, an optimal regression function need not be unique.

For example, suppose F is a parametric family of regression functions. This means that

F =
{

f (· , θ) : θ ∈ Θ ⊆ Rq}, where f (· , θ) is a function of x ∈ D and θ is a parameter vector that

belongs to some parameter space Θ. Further, assume that f (X, ·) is differentiable, almost surely,

at each θ ∈ Θ and that ∂
∂θ E(ε2) = E

(
∂
∂θ ε2). Let f (X, θ∗) with θ∗ ∈ Θ be an optimal predictor of Y.

Under the usual regularity conditions of optimization theory (see, e.g., Boyd and Vandenberghe,

2009, Section 5.5), it turns out that θ∗ must be a Karush-Kuhn-Tucker (KKT) point. In particular,

if θ 7→ E(ε2) is convex, we can use Slater’s regularity condition. Then, each KKT point θ∗ leads

us to an optimal predictor f (X, θ∗) of Y and it is guaranteed that the given minimum is global.

Moreover, if there are no (equality or inequality) constraints regarding θ at all, then

E
(

∂

∂θ
f (X, θ∗) ε∗

)
= 0 (2)

is a necessary and sufficient condition for an optimal prediction of Y, where ∂
∂θ f (X, θ∗) is the

derivative of f (X, ·) at θ∗ and ε∗ := Y − f (X, θ∗) denotes the associated regression error.

Further, suppose θ = (µ, η), where µ ∈ R is a location parameter. Then, the family F is closed

under translations, i.e., f ∈ F ⇒ λ + f ∈ F for all λ ∈ R. In this case, θ∗ also minimizes the

variance of the regression error ε. Moreover, we have ∂
∂µ f (X, θ) = 1 and thus Equation 2 leads

us to the two (necessary and sufficient) conditions E(ε∗) = 0 and Cov
(

∂
∂η f (X, θ∗), ε∗

)
= 0.6

For example, consider a linear predictor, i.e., f (X, α, β) = α + β′X with α ∈ R and β ∈ Rm. It

holds that ∂
∂β f (X, α, β) = X, and so we obtain the typical exogeneity conditions E(ε∗) = 0 and

Cov(X, ε∗) = 0 of linear regression.7 However, it is worth emphasizing that exogeneity does

not represent any model assumption. It is just a simple result of minimizing the mean square

error E(ε2) by using a linear regression function.

6In the special case of θ = µ, the second condition evaporates.
7There exist several nonequivalent definitions of exogeneity in the literature. Throughout this work, a regressor is
said to be exogenous if and only if it is not correlated with the residual of the given regression model.
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2.2.2. Description

If our aim is to predict some variable Y, we need no structural assumption. Then, the goal is to

find any variables X1, . . . , Xm in order to minimize the mean square error E(ε2) of the regression

equation Y = f (X) + ε. Since the regressors X1, . . . , Xm are intended only to predict the variable

Y, their choice is rather arbitrary and so they need not have any particular meaning. In any case,

the stronger the prediction power of f (X), the lower the mean square error. Hence, prediction

means to search for some appropriate regressors and to combine these variables by taking some

regression function from F in order to minimize E
(
ε2). By contrast, if we want to describe the

impact of X on Y, the situation is completely different. In this case, the regressors are chosen to

explain the relationship between X and Y. Hence, they have a particular meaning and so their

choice is not arbitrary. Moreover, the given regression function should be valid.

More precisely, let x 7→ g(x) = E(Y | X = x) be a real-valued function on D that quantifies the

conditional mean of Y given X = x. Henceforth, the function g is referred to as the true regression

function of Y given X.8 Correspondingly, Y = g(X) + ϵ is said to be the true regression equation,

while ϵ is called the true regression error or true residual. Now, the regression function f ∈ F is

said to be valid if and only if f (X) = E(Y | X), which is equivalent to

E(ε | X) = 0.

Hence, f is valid if and only if f = g.

Furthermore, the family F of regression functions is called adequate if and only if it contains a

valid regression function, i.e., g ∈ F . By contrast, if F is inadequate, we cannot describe the

impact of X on Y by a regression model Y = f (X) + ε with f ∈ F , appropriately. Then, we can

at best minimize the mean square description error

E
(
(g(X)− f (X))2).

Validity is a substantial model assumption.9 Therefore, whenever we use a regression equation

Y = f (X) + ε for the sake of description, it is considered a regression model. A regression model

is said to be valid if and only if the corresponding regression function, f , is valid. Another

expression for validity, which can often be found in the literature, is to say that the regression

model is well specified. However, this terminology seems to be ambiguous.10

For example, a linear regression model presumes that

E(Y | X) = α + β′X .

8We have E(Y2) < ∞ and thus Var(Y) = E(Y2)− E2(Y) = Var
(
E(Y|X)

)
+ E

(
Var(Y|X)

)
< ∞, which leads us to

0 ≤ E
(
Var(Y|X)

)
= E(Y2)−E

(
E2(Y | X)

)
. This implies that E

(
E2(Y | X)

)
= E

(
g2(X)

)
≤ E(Y2) and thus g(X) ∈ L2.

9Some authors require even more than validity. For example, Hastie et al. (2009, p. 28) additionally presume that ε is
independent of X. In any case, validity is an essential assumption of the celebrated Gauss-Markov theorem.

10I will come back to this crucial point in Section 2.7.

7



Frahm, 2024 • A Test for the Validity of Regression Models

Another well-known example is the probit model, where Y is a binary variable, so that

E(Y | X) = P(Y = 1 | X) = Φ(α + β′X).

More generally, a generalized linear model implies that

E(Y | X) = l−1(α + β′X),

where l : R → R is referred to as a link function and it is presumed that l is invertible.

One typically tries to quantify the marginal impact of X on Y, i.e., ∂
∂x g(X), in which case it is

implicitly assumed that the true regression function g is differentiable, almost everywhere. For

example, let the linear regression model Y = α + β′X + ε be valid. Then, the marginal impact of

X on Y is just β. Further, if the probit model is valid, the marginal impact is ϕ(α + β′X)β. More

generally, for a (valid) generalized linear model with link function l, we obtain the marginal

impact β/l′
(
l−1(α + β′X)

)
. Here, l′ symbolizes the derivative of l, which is presumed to exist

and to be nonzero at l−1(α + β′X), almost surely. The problem is that the marginal impact of X
on Y can be grossly misjudged by ∂

∂x f (X), i.e., by the partial derivative of the chosen regression

function f ∈ F , if the given regression model Y = f (X) + ε is invalid.

I focus on the mean of Y conditional on X, although other characteristics of the (conditional)

distribution of Y can be interesting as well. Indeed, one might argue that mean regression is

inappropriate if the distribution of Y is skewed or discontinuous. This argument presumes

that we aim at quantifying another functional like, e.g., a quantile (Koenker and Basset, 1978,

Koenker, 2005) or an expectile (Aigner et al., 1976, Newey and Powell, 1987),11 or that we even

want to assess the overall distribution of Y given X. This has become increasingly popular in

recent years (Kneib et al., 2023). Then, mean regression is certainly not the best choice. However,

this is not the intention behind this work. Here, I deliberately refer to the conditional mean of Y.

I have chosen the mean-regression approach mainly for three reasons:

1. Mean regression is still the most popular regression approach in empirical research.

2. It is quite appealing from a mathematical point of view, since we are able to apply well-

known rules from probability theory in order to derive the desired results.

3. There is a close relationship between the mean square error and the mean conditional

error, i.e., between prediction and description, which will be elaborated below.

The latter point is probably the main reason for confusion and misunderstanding in applied

econometrics. Thus, I will clarify this point before presenting and discussing the validity test.

2.3. The Connection between Prediction and Description

The residual ε = Y − f (X) represents the prediction error of the regression model Y = f (X) + ε,

whereas its description error is given by g(X)− f (X) = ε − ϵ. Now,

11See, e.g., Schulze Waltrup et al. (2015) for a nice overview of these measures.
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(i) Regression functions f and g
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𝜀

(ii) Prediction: min f∈F E(ε2)!
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𝑌

𝑔 𝑋
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𝜖

𝜀

(iii) g(X)− f (X) = ε − ϵ

𝑋

𝑌

𝑔 𝑋

𝑓 𝑋

(iv) Description: min f∈F E
(
(ε − ϵ)2)!

Figure 1: Prediction vs. description.

• the goal of prediction is to minimize the mean square prediction error E(ε2), whereas

• description aims at minimizing the mean square description error E
(
(ε − ϵ)2).

These goals are quite different and should thus be treated differently in practical applications.

Figure 1 illustrates the connection between prediction and description. Figure 1 (i) shows 10

observations of Y, based on the true (but unknown) regression function g, while f represents our

proposed regression function. Prediction tries to minimize the (mean square) distance between

f and the observations of Y (see Figure 1 (ii)). Figure 1 (iii) just demonstrates that the description

error g(X)− f (X) equals the difference between the model error, ε, and the true error ϵ. As we

can see, description aims at minimizing the distance between the proposed regression function

f and the true regression function g (see Figure 1 (iv)), not the observations of Y.

Before going further, I would like to make two basic but quite important observations:

1. There always exists a valid regression function, viz., x 7→ g(x) = E(Y | X = x), and

2. there cannot exist any other valid regression function, i.e., g is unique.

This leads us to our first proposition.12

12All nontrivial proofs of the following statements can be found in the appendix.
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Validity Case

V2 = 0 f (X) ̸= g(X) = Y
0 < V2 < 1 f (X) ̸= g(X) ̸= Y
V2 = 1 f (X) = g(X), i.e., f is valid

Table 1: Different cases of validity.

Proposition 1. The true regression function of Y given X is the only valid regression function in G.

For example, let the regression model Y = f̂ (X) + ε̂ with f̂ ∈ F be valid. If the regression

model Y = f̃ (X) + ε̃ with f̃ ∈ F is valid, too, then it holds that f̃ (X) = g(X) = f̂ (X) and thus

ε̃ = ε̂. Hence, Y = f̃ (X) + ε̃ is essentially the same regression model as Y = f̂ (X) + ε̂. Thus, it

makes no difference at all whether we use f̂ or f̃ to describe the impact of X on Y.

The following proposition observes that every optimal regression function represents the best

possible fit to the true regression function, irrespective of whether or not the given family F of

regression functions is adequate. Hence, it is natural to use an optimal predictor of Y if we want

to describe the impact of X on Y as best as possible. Nonetheless, our main goal still is to describe
the impact of X on Y and not to predict Y. Otherwise, we should take some additional regressors

into account in order to increase our prediction power, i.e., to decrease the mean square error.13

Proposition 2. A regression function f̂ ∈ G is optimal among F if and only if

f̂ ∈ arg min
f∈F

E
((

g(X)− f (X)
)2
)

.

In any case, for each regression function f ∈ G, we have

E
(
(Y − f (X))2) = E

(
(Y − g(X))2)+ E

(
(g(X)− f (X))2). (3)

Thus, E(ε2) = E(ϵ2) + E
(
(ε − ϵ)2) with ε = Y − f (X) and ϵ = Y − g(X), i.e., E(ϵ2) ≤ E(ε2).

Thus, we are able to decompose the mean square error E
(
(Y − f (X))2) into two parts:

1. The first part, E
(
(Y − g(X))2), measures the fluctuation of Y around E(Y | X), which shall

not be explained by a regression of Y on X, whereas

2. the second part, E
(
(g(X)− f (X))2), quantifies the deviation of E(Y | X) from f (X), which

is zero if and only if the regression function f is valid.

This suggests to quantify the validity of the regression model Y = f (X) + ε or, equivalently, of

the corresponding regression function f , by

V2 :=
E(ϵ2)

E(ε2)
= 1 −

E
(
(ε − ϵ)2)
E
(
ε2
) ∈

[
0, 1
]
,

13Overfitting is not an issue at all when trying to predict Y by X, provided that we know the probability measure P.
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𝑌
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𝜖
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(i) Explanation power

𝑋

𝑌

𝑔 𝑋

𝑓 𝑋
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E 𝜖2

E 𝜀2

𝜖

𝜀

𝑅2 ≔ 1−
E 𝜀2

Var 𝑌

(ii) Validity (V2) and prediction power (R2)

Figure 2: Regression measures.

provided that Y ̸= f (X), i.e., ε ̸= 0. Otherwise, we have f (X) = g(X) and so we may set

V2 = 1.14 Anyway, f is valid if V2 = 1 and it is invalid if V2 < 1. In the particular case of V2 = 0

we have Y = g(X) ̸= f (X), i.e., f fails to capture the perfect functional relationship between X
and Y. Table 1 summarizes the different cases of V2.

In order to judge whether or not a given regression model Y = f (X) + ε is appropriate, one

typically uses the coefficient of determination

R2 := 1 − E(ε2)

Var(Y)
.

To be more precise, R2 measures the prediction power of the regression equation Y = f (X) + ε

or, equivalently, of the corresponding predictor f (X). In fact, we have R2 = 1 if and only if

E(ε2) = 0. Nonetheless, we can only guarantee that R2 ≤ 1 because E(ε2) may very well be

greater than Var(Y), in which case the coefficient of determination becomes negative.15

By applying R2, one usually presumes that the mean of ε is zero and also that f (X) and ε are

uncorrelated. For example, consider a linear regression model Y = α + β′X + ε in which the

exogeneity conditions E(ε) = 0 and Cov(X, ε) = 0 are satisfied. Then, we have

R2 =
Var( f (X))

Var(Y)
∈
[
0, 1
]
,

in which case the coefficient of determination quantifies the proportion of the total variance of Y
that can be explained by the variance of f (X).

Furthermore, since ϵ = Y − g(X) with g(X) = E(Y | X), we have E(ϵ | X) = 0 and thus

E(ϵ) = Cov(g(X), ϵ) = 0. Hence, let

S2 := 1 − E(ϵ2)

Var(Y)
=

Var(g(X))

Var(Y)
∈
[
0, 1
]

14From Y = f (X) it follows that g(X) = E(Y | X) = E( f (X) | X) = f (X).
15A simple example is Y = −1 + ε with Y ∼ N (0, 1), so that ε = Y + 1 and thus E(ε2) = 2, i.e., R2 = −1.
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Figure 3: Dependence between V2 and R2 given S2.

be the explanation power of X, i.e., the proportion of the total variance of Y that can be explained

by the variance of g(X).16 The explanation power does not depend on the chosen regression

function—it only depends on the choice of regressors.

The regression measures are illustrated in Figure 2. The explanation power of X is quantified

by S2, which can be interpreted as the R2 of the true regression equation Y = g(X) + ϵ (see

Figure 2 (i)). Further, the validity measure V2 is illustrated in Figure 2 (ii), which contains also

the prediction power R2 of the proposed regression model Y = f (X) + ε.

The following theorem marks the basic result regarding the validity measure.

Theorem 1 (Validity). Let Y = f (X) + ε be any regression model. In the case of R2 < 1, we have

V2 =
1 − S2

1 − R2

and otherwise V2 = S2 = 1. In any case, it holds that R2 ≤ S2, where R2 = S2 if and only if V2 = 1.

Hence, the validity of a regression model Y = f (X) + ε depends (i) on the explanation power

of X and (ii) on the prediction power of f (X). This creates a simple but counterintuitive trade-off,

which can be best understood by observing Figure 3. We can see that a regression model is valid

if and only if R2 attains its maximum S2. For example, if the explanation power, S2, is zero, the

coefficient of determination, R2, must be zero, too, in order to obtain a valid regression model.

Analogously, if S2 = 1 also R2 = 1 is required for V2 = 1. Now, let us fix any value of R2. The

higher S2, the lower V2! Put another way, the higher the explanation power of X, the lower the

validity of f , given that the prediction power of the regression model is fixed.

This strange relationship between V2, R2, and S2 can be explained as follows: Suppose you

ask your friend to prepare an elaborate dish. You agree that you will bring him all the necessary

16Thus, S2 can be considered the coefficient of determination of the true regression equation Y = g(X) + ϵ.
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Measure Definition Range Meaning Object

A2 S2 + V2 − 1
(
− 1, 1

]
Accuracy Y = f (X) + ε

R2 1 − E(ε2)
Var(Y)

(
− ∞, 1

]
Prediction power f (X)

S2 1 − E(ϵ2)
Var(Y)

[
0, 1
]

Explanation power X

V2 E(ϵ2)
E(ε2)

[
0, 1
]

Validity f

Table 2: Regression measures of Y = f (X) + ε = g(X) + ϵ with g(X) = E(Y | X).

ingredients in return. The better the ingredients you get from the supermarket, the higher S2,

and the closer your friend comes to the dish, the higher R2. Now, suppose the shopping was

great, i.e., your goods are fine, but nevertheless your friend screwed up. Put another way, S2 is

close to 1 and R2 is close to 0. Then, we may conclude that his cooking skills are bad. In other

words, V2 is close to 0, too. This can lead to astonishing phenomena and adverse effects, which

might often be overlooked in practical applications. I will come back to this point in Section 3.2.

The problem is that the explanation power of the chosen regressors is unknown in real life

and thus we cannot draw any conclusion about the validity of the regression model just by

considering its coefficient of determination. In fact, a valid regression model Y = f (X) + ε must

be based on an optimal predictor f (X). Nonetheless, if the explanation power of X is low, the

regression model must have a weak prediction power! Theorem 1 reveals that the coefficient of

determination of a valid regression model must even be zero if S2 = 0. This demonstrates that

R2 shall not be used as a validity measure. The same holds true for any other measure that does

not take the explanation power of the regressors into account, even if it controls for the number

of parameters, like the Akaike or the Bayesian information criterion.

In practical applications, we typically want to find some regressors X1, . . . , Xm with a strong

explanation power. Then, the latter is considered an additional goal of description, i.e., it does

not supersede the validity of the regression function f . Thus, we try to maximize the sum of

1. the explanation power of the regressors and

2. the validity of the regression model.

The explanation power, S2, is a measure for our ability to select appropriate regressors, whereas

the validity, V2, quantifies our ability to combine those regressors. Simply put, for a delicious

dinner we need both good ingredients and a careful preparation.

Thus, let us define the accuracy of the regression model Y = f (X) + ε by

A2 := S2 + V2 − 1 ∈
(
− 1, 1

]
.

In fact, we always have A2 > −1 because, according to Theorem 1, S2 = 0 implies V2 > 0. The

following result is an immediate consequence of Theorem 1 and so its proof can be skipped.

13
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Corollary 1 (Accuracy). Let Y = f (X) + ε be any regression model. We have A2 = V2R2.

Hence, the accuracy, A2, of any regression model equals the product of its validity, V2, and

its prediction power, R2, where V2 and R2 are related to one another according to Figure 3 or,

equivalently, by Theorem 1. Table 2 summarizes the regression measures.

Ideally, we should achieve A2 = 1, which implies S2 = V2 = 1, but this is virtually impossible

in real-life applications. The regression model with empty set of regressors is given by

Y = E(Y) + ε .

This model is always valid, but we have S2 = 0 and thus A2 = 0. Hence, we should at least try

to accomplish A2 > 0, i.e., S2 > 0 and V2 > 0.

2.4. General Conditions for Validity

This section contains some general conditions for the validity of a regression model.

2.4.1. Necessary Conditions

Theorem 2 (Necessary Conditions). Suppose the family F is adequate and let Y = f̂ (X) + ε̂ with
f̂ ∈ F be some valid regression model. The following assertions hold true:

(i) E(ε̂) = 0

(ii) Var(ε̂) = E
(
Var(ε̂ | X)

)
(iii) Cov(h(X), ε̂) = 0 for every real-valued function h on D with h(X) ∈ L2.

(iv) The regression function f̂ is optimal among F .

(v) If the regression function f̃ ∈ F is optimal among F , too, then f̃ = f̂ . This means that also the
regression model Y = f̃ (X) + ε̃ is valid and we have ε̃ = ε̂.

Theorem 2 immediately leads us to the following corollary. Thus, its proof can be skipped.

Corollary 2. If the conditions of Theorem 2 are satisfied, the following assertions hold true:

(i) E(ε̂2) = Var(ε̂)

(ii) Cov(X, ε̂) = 0

(iii) Cov
(

f̂ (X), ε̂
)
= 0

(iv) Cov
(

f (X), ε̂
)
= 0 for all f ∈ F .

(v) E
(

f (X)ε̂
)
= 0 for all f ∈ F .

14
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Thus, X and ε are uncorrelated if Y = f (X) + ε is valid, but they need not be independent. For

example, if (X, Y) has an elliptical distribution (Cambanis et al., 1981, Kelker, 1970), the linear

regression model Y = α + β′X + ε with β = Var(X)−1Cov(X, Y) and α = E(Y) − β′E(X) is

valid. However, ε is independent of X only if the (multivariate) distribution of (X, Y) is normal.

We conclude that the typical exogeneity conditions of linear regression, i.e.,

E(ε) = 0

Cov(X, ε) = 0,
(4)

are satisfied if the regression model Y = f (X) + ε is valid. This holds true even if f is nonlinear.

Nevertheless, the exogeneity of the regressors X1, . . . , Xm is only a necessary, but not a sufficient

condition for validity. By using a parametric family F =
{

f (· , θ) : θ ∈ Θ ⊆ Rq} of regression

functions, exogeneity can often be accomplished by specifying θ such that E
(

f (X, θ)
)
= E(Y)

and Cov(X, Y) = Cov
(
X, f (X, θ)

)
, but this does not guarantee that the regression model is

valid. For example, the regressors in Y = α + β′X + ε with β = Var(X)−1Cov(X, Y) are always

exogenous just by construction, although the linear regression model can be highly invalid. I

will come back to this crucial point later on.

2.4.2. Sufficient Conditions

Let (X1, Y1), . . . , (Xn, Yn) be a sample of (not necessarily independent) observations of (X, Y).
For notational convenience, from now on I will use the random n × m matrix

X =


X11 · · · X1m

...
...

Xn1 · · · Xnm


to symbolize the sample observations X1, . . . , Xn of X. Correspondingly,

x =


x11 · · · x1m

...
...

xn1 · · · xnm


denotes some realization of X. Thus, x is a real-valued n × m matrix of fixed regressor values.

Moreover, Y = (Y1, . . . , Yn) contains the sample observations of Y and ε = (ε1, . . . , εn) contains

the corresponding sample errors with ε i = Yi − f (Xi) for i = 1, . . . , n.

Now, let f be a linear regression function. Hayashi (2000, p. 7) says that X is strictly exogenous if

and only if E(ε |X) = 0. Strict exogeneity is a classical, but quite restrictive assumption of linear

regression analysis. However, we can readily extend Hayashi’s definition of strict exogeneity

to nonlinear regression models. To be more precise, the (linear or nonlinear) regression model

Y = f (X) + ε with f ∈ F satisfies the strict-exogeneity assumption if and only if E(ε |X) = 0.

Further, the Gauss-Markov assumption presumes that Y = α1+Xβ+ ε, n > m, rk
[
1 X
]
= m+ 1,
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E(ε |X) = 0, and Var(ε |X) = σ2In with σ2 > 0. It represents another classical assumption of

linear regression analysis, which is even stronger than strict exogeneity.

This leads us to the next theorem, which provides sufficient conditions for the validity of a

regression model.

Theorem 3 (Sufficient Conditions). Let f ∈ F be some regression function. If anyone of the following
assertions holds true, the regression model Y = f (X) + ε is valid and so the family F is adequate.

(i) E(ε) = 0 and ε is independent of X.

(ii) E(ε) = 0 and Var(ε | X) = Var(ε).

(iii) X is strictly exogenous.

(iv) The Gauss-Markov assumption is satisfied.

Thus, if we have found a regression function f such that E(ε) = 0 and ε is independent of X,

we can be sure that f is valid. However, this goes far beyond validity and, in general, there is

no regression function at all that satisfies this quite ambitious condition. For example, suppose

once again that (X, Y) possesses an elliptical distribution, where the covariance matrix of X
is positive definite. It has already been observed that there exists a (unique) valid regression

model Y = α + β′X + ε, but ε cannot be independent of X unless (X, Y) is normally distributed.

The next theorem emphasizes the special role of elliptical distributions in linear regression

analysis. It states that we can select, i.e., exclude or include, any component of an elliptically

distributed random vector at discretion in order to create a valid linear regression model.

Theorem 4 (Elliptical Distributions). Suppose Z = (Z1, . . . , Zd) with Z1, . . . , Zd ∈ L2 is some
random vector possessing an elliptical distribution with Var(Z) > 0. Further, let

{
X1, . . . , Xm, Y

}
be

any subset of
{

Z1, . . . , Zd
}

. Then, the linear regression model

Y = α + β′X + ε

with X = (X1, . . . , Xm) is valid if and only if the parameters α and β are such that System 4 is satisfied,
which is equivalent to β = Var(X)−1Cov(X, Y) and α = E(Y)− β′E(X).

2.4.3. Equivalent Conditions

The following theorem provides equivalent conditions for validity.

Theorem 5 (Equivalent Conditions). The regression model Y = f (X) + ε with f ∈ F is valid, and
so the family F is adequate, if and only if the following equivalent assertions are true:

(i) The regression function f is optimal among G.

(ii) E(ε) = 0 and Var(ε) = E(Var(ε | X)).

(iii) E(ε2) = E
(
(Y − g(X))2)
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The first part of that theorem asserts that a regression function f is valid if and only if it is

optimal among the set G of all regression functions. Put another way, validity is equivalent to

global optimality. Thus, if we want to describe the impact of X on Y, appropriately, we must find

the best predictor f (X) of Y among the set G(X) :=
{

f (X) : f ∈ G
}

of all possible predictors of

Y based on X. This goal can be highly ambitious if the true regression function, g, is not simple.

2.5. Projection Theorems

Let F be any family of regression functions. We have

E
(
(Y − f (X))2) = Var

(
Y − f (X)

)
+ E2(Y − f (X)

)
for all f ∈ F . A translation of f affects only the mean, but not the variance of Y − f (X). Thus,

if F is closed under translations and the regression function f̂ is optimal among F , it must

hold that E(ε̂) = 0 with ε̂ = Y − f̂ (X). Further, let F (X) :=
{

f (X) : f ∈ F
}

be the set of all

predictors of Y that are obtained by choosing some regression function f from F and applying

f to the vector X of regressors. The error of the regression model Y = f̃ (X) + ε̃ with f̃ ∈ F is

said to be orthogonal to F (X) if and only if E
(

f (X)ε̃
)
= 0 for all f ∈ F . The following theorem

is an immediate consequence of Hilbert’s projection theorem and thus its proof can be skipped.

Theorem 6 (Projection Theorem I). Let F (X) be a closed and convex subset of L2.

(i) The family F contains a unique regression function f that is optimal among F .

(ii) If F (X) is a vector subspace of L2, then f is the unique element of F such that ε = Y − f (X) is
orthogonal to F (X).

Let V be any family of regression functions such that V(X) is a vector subspace of L2. Thus,

if f is the optimal regression function among V , it holds that E( f (X)ε) = 0 with ε = Y − f (X).

Moreover, if V is closed under translations, we have E(ε) = 0 and thus Cov( f (X), ε) = 0.17 For

example, let L :=
{

x 7→ a + b′x : a ∈ R, b ∈ Rm} be the family of linear regression functions. In

this case, the typical exogeneity conditions E(ε) = 0 and Cov(X, ε) = 0 are satisfied if and only

if ε is orthogonal to L(X), which means that f (X) is the best linear predictor based on X.

The next proposition guarantees that f ∈ F is optimal if the corresponding error ε = Y − f (X)

is orthogonal to F (X), provided that the family F contains an optimal regression function at all.

This holds true irrespective of whether or not the family F is adequate.

Proposition 3. Suppose the regression function f̂ ∈ F is optimal among F and consider any other
regression function f̃ ∈ F . Then, the error ε̃ = Y − f̃ (X) cannot be orthogonal to F (X).

The next theorem is similar to Theorem 6 and thus it can be considered a variant of Hilbert’s

projection theorem. However, it does not require that F (X) is some vector subspace of L2. It

even need not be closed and convex. The essential requirement is that the family F is adequate.

17As already mentioned in Section 2.3, this implies that R2 ∈
[
0, 1
]
, in which case the coefficient of determination

quantifies the proportion of the total variance of Y that can be explained by the variance of f (X).
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Theorem 7 (Projection Theorem II). If the family F is adequate, it contains a unique regression
function f that is optimal among F . The regression function f coincides with the unique valid regression
function in F , and f is the unique element of F such that ε = Y − f (X) is orthogonal to F (X).

Hence, if the family F is adequate, a regression function that is optimal among F (and thus

valid) is always characterized by an orthogonal projection of Y onto F (X). Otherwise, i.e., if F
is inadequate, there can very well exist some regression function f̂ that is optimal among F , and

this regression function may even be unique. Nonetheless, f̂ cannot be valid.18 In this case, the

error ε̂ = Y − f̂ (X) even need not be orthogonal to F (X). For example, suppose Y = 0X + ϵ,

where X, ϵ ∼ N (0, 1) are independent, and let F (X) =
{

λ + X : λ ∈ R
}

be the set of predictors

of Y. Obviously, the family F is inadequate. It turns out that f̂ (X) = X is the optimal predictor

of Y among F (X). However, the error ε̂ = Y − f̂ (X) is not orthogonal to F (X), since ε̂ = ϵ − X
and thus E

(
f̂ (X)ε̂

)
= E

(
X(ϵ − X)

)
= −1. In fact, F (X) is closed and convex, but it is not

a vector subspace of L2. However, F is closed under translations and so we have E(ε̂) = 0.

Nonetheless, X is endogenous, since Cov(X, ε̂) = −1, too.

2.6. Hierarchy of Regression Properties

Although validity implies both optimality and exogeneity, in general, the latter properties are

neither necessary nor sufficient for one another. It has been shown at the end of Section 2.5 that

an optimal regression function need not produce exogenous regressors and thus it can very well

violate the typical exogeneity conditions of linear regression. Conversely, if F is a family of

nonlinear regression functions, it can happen that f ∈ F is suboptimal although it satisfies the

typical exogeneity conditions. Then, exogeneity can even prevent f from being optimal.

For example, consider the family of cubic regression functions of the form x 7→ f (x, α, β) =

α + β
3 x3 with α, β ∈ R and assume that Y = X + ϵ, where X, ϵ ∼ N (0, 1) are independent.

Thus, we obtain ∂
∂x f (x, α, β) = βx2, ∂

∂α f (x, α, β) = 1, and ∂
∂β f (x, α, β) = 1

3 x3. The regressor X
is exogenous if and only if Cov(X, Y) = Cov

(
X, f (X, α, β)

)
, i.e., E(XY) = E

(
X f (X, α, β)

)
. We

have E(XY) = 1 and Stein’s lemma reveals that E
(
X f (X, α, β)

)
= E

(
∂

∂x f (X, α, β)
)
= β. Hence,

the exogeneity conditions E(ε) = Cov(X, ε) = 0 are satisfied if and only if α = 0 and β = 1.

Due to Equation 2, optimality requires E
(

∂
∂β f (X, α, β) ε

)
= 1

3 E
(
X3ε
)
= 0, i.e., E

(
X3ε
)
= 0, but

with α = 0 and β = 1 we obtain E
(
X3ε
)
= −2.19 By contrast, for α = 0 and β = 3

5 , the cubic

regression function becomes optimal. Hence, if the given regression function satisfies the typical

exogeneity conditions, it cannot be optimal.

To sum up, the Gauss-Markov assumption is stronger than strict exogeneity, which implies

validity, which is equivalent to global optimality, which is sufficient for optimality, orthogonality,

and exogeneity. Furthermore, if the predictor f (X) stems from some vector subspace of L2, i.e.,

F = V , optimality and orthogonality are equivalent, and if F contains all linear regression

functions, orthogonality implies exogeneity. In particular, if we focus on linear regression

18A typical example is a linear regression of Y on X where the true regression function of Y given X is nonlinear.
19This can be shown by using the formula E(Xk) = k!/

(
2

k
2 k

2 !
)

for each even integer k.
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analysis, i.e., F = L, then optimality, orthogonality, and exogeneity are even equivalent.

Moreover, if F is adequate, then optimality, orthogonality, validity, and global optimality are

equivalent. Finally, if F = L is adequate, it turns out that optimality, orthogonality, validity,

global optimality, and exogeneity are equivalent.20 Nonetheless, in general, exogeneity is only a

necessary but not a sufficient condition for validity. That is, it is not enough to guarantee that the

typical exogeneity conditions are satisfied if we want to construct a valid regression model.

The following theorem summarizes our previous findings, where the abbreviation

• V means that f ∈ F is valid, i.e., E(ε | X) = 0,

• GM means that the Gauss-Markov assumption is satisfied,

• SE means that X is strictly exogenous, i.e., E(ε |X) = 0,

• OP means that f is optimal among F , i.e., f ∈ arg minF E(ε2),

• GOP means that f is globally optimal, i.e., it is optimal among G,

• EX means exogeneity, i.e., E(ε) = 0 and Cov(X, ε) = 0, whereas

• OR means orthogonality, i.e., E
(

f (X)ε
)
= 0 for all f ∈ F .

Theorem 8 (Hierarchy). Let F ⊆ G be any family of regression functions, V be a family of regression
functions such that V(X) is a vector subspace of L2, and L be the family of linear regression functions.

• GM ⇒ SE ⇒ V ⇔ GOP ⇒ OP ∧ OR ∧ EX

• F = V : OP ⇔ OR

• F ⊇ L: OR ⇒ EX

• F = L: OP ⇔ OR ⇔ EX

• g ∈ F : OP ⇔ OR ⇔ V ⇔ GOP ⇒ EX

• g ∈ F = L: OP ⇔ OR ⇔ V ⇔ GOP ⇔ EX

Figure 4 illustrates some important aspects of Theorem 8. In most cases, exogeneity is only a

necessary but not a sufficient condition for validity. This holds true even if we concentrate on

the family of linear regression functions, i.e., F = L, or if F is adequate, i.e., g ∈ F . Hence, a

(linear) regression model can very well satisfy the exogeneity conditions without being valid.

This underpins the importance of a genuine validity check in practical applications, provided

that we want to describe the impact of X on Y and not to predict Y by X.

20A typical example is a linear regression of Y on X where (X, Y) is elliptically distributed.
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Orthogonality

Validity = 
Global optimality

Strict exogeneity

Exogeneity

Optimality

Gauss Markov

(i) General

Optimality = Orthogonality = 
Exogeneity

Validity = 
Global optimality

Strict exogeneity

Gauss Markov

(ii) F = L

Exogeneity

Optimality = 
Orthogonality = Validity = 

Global optimality

Strict exogeneity

Gauss Markov

(iii) F is adequate

Optimality = 
Orthogonality = Validity = 

Global optimality = 
Exogeneity

Strict exogeneity

Gauss Markov

(iv) F = L is adequate

Figure 4: Hierarchy of regression properties.

2.7. Variable Selection and Model Specification

A regression equation Y = f (X) + ε is satisfied just by the very definition of ε := Y − f (X).

It becomes a regression model only if we make some specific assumption A about the joint

distribution of X and ε. Thus, we may consider the given model well specified if and only if A is

satisfied. For example, A : E(ε | X) = 0 claims that the regression model Y = f (X) + ε is valid.21

However, there is no common understanding of what constitutes a well-specified regression

model, and there are many myths and legends circulating. These are highly misleading in the

light of what we know so far. Hence, they shall be clarified in this section before going further.

There is a common misconception in regression analysis, namely that there exists only one set

of relevant regressors. Thus, we should not use any other set of regressors to describe Y. The

objective is to find the relevant regressors and estimate the parameters of the corresponding

model. This seems to be one of the most persistent mistakes in regression analysis.

For example, suppose E(X1) = E(X2) = E(X3) = E(Y) = 0,

Var(X) =


1 1

2
1
2

1
2 1 1

2
1
2

1
2 1

 , and Cov(X, Y) =


1

1

1

 ,

21This precise notion of model specification is shared, e.g., by MacKinnon (1992).
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in which case

Y =
2
3

X1 +
2
3

X2 + ε2 (5)

is the only linear regression model that involves X1 and X2 such that all exogeneity conditions

are satisfied. The common misconception mentioned above seems to be due to the following

arguments (see, e.g., Fomby et al., 1984, Section 18.2.1).22 Equation 5 turns into

Y =
2
3

X1 + ε1 (6)

with ε1 = 2
3 X2 + ε2 if we omit X2, in which case X1 is correlated with ε1. More precisely, it holds

that

Cov(X1, ε1) = Cov
(

X1,
2
3

X2 + ε2

)
=

2
3

1
2
+ 0 =

1
3
̸= 0,

i.e., X1 is endogenous. Thus, (i) taking only X1 as a single regressor into account leads us astray,

while (ii) adding X3 to Equation 5 does not make any sense at all because X3 is irrelevant. This

means that its regression coefficient must be zero and all other parameters remain unaffected.

Unfortunately, both arguments are flawed. We can very well ignore any regressor without

producing endogeneity. Furthermore, the regression coefficient of each additional regressor

can (and, in general, it will) be nonzero, too. Ignoring some variable just means to reduce the

set of regressors, whereas taking some additional variable into account means to extend that

set. However, a linear regression model obeys all exogeneity conditions if its parameters are

specified in the usual way, i.e., by β = Var(X)−1Cov(X, Y) and α = E(Y)− β′E(X).23 Thus, we

can choose any arbitrary set S =
{

X1, . . . , Xm
}

of regressors to create a linear regression model

in which all exogeneity conditions are satisfied just by construction.24

For example, what happens if we exclude X2? Then, our set of regressors shrinks to S =
{

X1
}

,

and so the linear regression model turns into

Y = X1 + ε1

with ε1 = Y − X1, in which X1 and ε1 are still uncorrelated. Further, if we include X3, our set of

regressors expands to S =
{

X1, X2, X3
}

, and the linear regression model turns into

Y =
1
2

X1 +
1
2

X2 +
1
2

X3 + ε3

with ε3 = Y − 1
2 X1 − 1

2 X2 − 1
2 X3. Thus, we have β3 = 1

2 ̸= 0, which means that X3 is in fact

relevant, and we can see that all exogeneity conditions are again satisfied.25 These arguments

do not require us to make any distributional assumption about X and ε.

22Although Fomby et al. (1984) refer to the estimation of α and β, their arguments are based on model specification.
23Here, any component of β may be zero, in which case the corresponding regressor disappears.
24Theorem 4 even guarantees that the resulting regression model is valid if the random variables possess a joint

(nonsingular) elliptical distribution and the regression parameters are specified in the usual way.
25However, none of these models need to be valid, since (according to Figure 4 or, equivalently, Theorem 8) exogeneity

is only a necessary but not a sufficient condition for validity.
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To sum up, the specification of a linear regression model essentially depends on the given

set of regressors, provided that we choose the regression parameters in the usual way, i.e.,

such that all exogeneity conditions are satisfied by construction. This holds true for each set of

regressors. Hence, endogeneity is no problem at all in linear regression analysis, provided that

the regressors are observable and that there are no measurement errors.

We conclude that there is not only one appropriate way to describe Y.26 If we have found a

well-specified regression model based on some set of regressors, a model based on any other set

of regressors can be well specified, too. Hence, it makes no sense at all to say that a regression

model is well specified only if we limit ourselves to specific regressors. In fact, we can choose

any other set of regressors to construct a well-specified model, and the number of well-specified

regression models for Y can even be infinite, since the number of potential regressors is infinite,

too.27 Whether or not some regression model is well specified only depends on A, i.e., on our

assumption about the distribution of (X, ε), given the set S =
{

X1, . . . , Xm
}

of regressors.

Now, I would like to discuss another issue related to variable selection and model specification.

Suppose the true regression equation is Y = X1 + X2 + ϵ, where the variables X1, X2, ϵ ∼ N (0, 1)

are (mutually) independent and F = L. Since we have g(X) = X1 + X2 with X = (X1, X2), the

family of linear regression functions, L, is adequate and Theorem 8 tells us that validity and

exogeneity are equivalent in this particular case. Now, consider the simple linear regression

model Y = X1 + ε, which means that ε = X2 + ϵ. Since it holds that E(ε) = Cov(X1, ε) = 0, the

typical exogeneity conditions of linear regression seem to be satisfied. Further, we have also

E(ε | X1) = 0, which suggests that the given regression model is valid. Nevertheless, it is in fact

invalid because f (X) = X1 ̸= X1 + X2 = g(X)! What is the reason for this paradox?

Our set S of regressors consists of X1 and X2. Therefore, we actually have three exogeneity

conditions, but the third one is violated, since

Cov(X2, ε) = Cov(X2, X2 + ϵ) = Var(X2) + Cov(X2, ϵ)︸ ︷︷ ︸
= 0

= 1.

Furthermore,

E(ε | X1, X2) = E(X2 + ϵ | X1, X2) = E(X2 | X1, X2) + E(ϵ | X1, X2)︸ ︷︷ ︸
= 0

= X2 ̸= 0

clearly demonstrates that the given regression model is invalid. By contrast, if we had initially

chosen X1 as a single regressor, i.e., S =
{

X1
}

, the simple linear regression model Y = X1 + ε

would have satisfied all (two) exogeneity conditions, and its mean conditional error E(ε | X1)

would have been zero. Hence, in that case, this linear regression model would have been valid.

The choice of regressors is typically motivated by arguments that focus on optimality rather

than validity (see, e.g., Shibata, 1981). This is usually associated with the common problem

that the probability measure P is unknown in real life. Hence, if the family F of regression

26This is supported also by the simple fact that the trivial regression model Y = Y is always valid.
27For any set of regressors, there exists a unique valid regression function f , namely the true regression function g.
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functions is parametric, we have to estimate the parameters of the (optimal) regression function.

This creates estimation risk and can lead to overfitting, which must be taken into account, too.

However, optimality is not the same as validity. More precisely, prediction aims at minimizing

the mean square prediction error, E
(
ε2), whereas description means to minimize the mean

square description error E
(
(ε − ϵ)2). Hence, the selection criteria of prediction do not apply

to description. Therefore, mixing up the main goals of regression analysis, i.e., prediction and

description, and applying flawed arguments of variable selection can be highly misleading.

As already mentioned at the beginning of Section 2.2.2, the choice of S , i.e., of the set of

regressors, should depend on our principal goal:

• If we want to predict Y by X, the choice of S is rather arbitrary, since we only try to achieve

a strong prediction power. Hence, X1, . . . , Xm are just chosen for pure statistical reasons.

• By contrast, if we want to describe the impact of X on Y, the choice of S is not arbitrary. It

is driven by theoretical considerations that go beyond statistics.

More precisely, prediction aims at maximizing R2. This requires us to find some variables

X1, . . . , Xm with a strong explanation power, S2, and also an optimal regression function f ∈ F
in order to minimize the mean square prediction error. This goal can be accomplished without

validity, and in general the regressors even need not be exogenous. By contrast, description aims

at maximizing V2. In that case, we try to come as close as possible to the true regression function

g, given our set of regressors, by searching for some regression function f ∈ F that minimizes

the mean square description error. Then, once again we should try to find an optimal regression

function in F . In general, however, this is far from sufficient—even not if we focus on linear

regression analysis, i.e., F = L, and guarantee that all exogeneity conditions are satisfied. The

problem is that L can be inadequate, in which case each regression function f ∈ F is invalid.

Thus, I strongly recommend to apply a validity test, i.e., a test for the null hypothesis H0 : f = g,

which is equivalent to H0 : E(ε | X) = 0. Such a test is developed in the next section.

3. The Validity Test

3.1. Test Statistic

3.1.1. Basic Motivation

Theorem 9 (Residuals). Let f ∈ F be any regression function, (X1, Y1), . . . , (Xn, Yn) be a sample of
n ≥ 1 independent observations of (X, Y), and ε1, . . . , εn with ε i = Yi − f (Xi) for i = 1, . . . , n be the
associated sample errors. Then, we have

P(ε ≤ e |X) =
n

∏
i=1

P(ε i ≤ ei |X)
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for all e = (e1, . . . , en) ∈ Rn. Further, it holds that

P(ε i ≤ ei |X) = P(ε i ≤ ei | Xi)

for all ei ∈ R and i = 1, . . . , n.

Hence, if the given observations of (X, Y) are independent, the conditional distribution of ε i

depends on X only through Xi, i.e., the sample observation of X that is associated with ε i. In

particular, if the regression function f is valid, we have

E(ε i |X) = E(ε i | Xi) = 0

for i = 1, . . . , n. Further, the residuals ε1, . . . , εn are independent conditionally on X.

Now, let P be any n × n permutation matrix, which may depend on the random matrices

X, Y, or on any other (random) quantity. Hence, ε∗ = (ε∗1, . . . , ε∗n) = Pε is a permutation of

ε = (ε1, . . . , εn). For example, assume that the errors ε1, . . . , εn are sorted in ascending order

ε∗1 ≤ . . . ≤ ε∗n. Then, we can expect that the mean of ε∗1 is less than the mean of ε∗2, etc. Thus, in

general, the distribution of ε conditional on X is not invariant against some permutation.

Suppose the permutation is based on X, i.e., that P is a function of X1, . . . , Xn. Simply put,

assume that P is fixed with X. Then, if the regression function f is valid, we have

E(ε∗i |X) = E(ε i |X) = E(ε i | Xi) = 0

for i = 1, . . . , n, i.e., E(ε∗ |X) = 0. Moreover, according to Theorem 9, even the joint distribution

of ε given X does not change after the permutation, provided that each ε i is independent of Xi.

Let
(
ε∗1, . . . , ε∗k

)
be any selection of k ∈

{
1, . . . , n

}
elements of ε that is determined by X. The

selection can be viewed as a result of the following two-step procedure: (i) Consider some

permutation ε∗ = Pε that is based on X and (ii) choose the first k elements of ε∗. Theorem 9

implies that E(ε∗i |X) = 0 for i = 1, . . . , k, provided that the given regression function, f , is valid.

Hence, the conditional mean of 1√
k ∑k

i=1 ε∗i is zero, too. Therefore, a natural quantity for testing

the null hypothesis that E(ε i | Xi) = 0 for i = 1, . . . , n, i.e., that f is valid, appears to be

Tk =
1
k

(
k

∑
i=1

ε∗i

)2

.

There exist sn = 2n − 1 possible selections of errors and sn grows exponentially to infinity as

n → ∞. However, it makes not much sense to consider all possible selections in order to test for

the validity of f . Instead, I will concentrate on n2 specific selections. More precisely, let ε i,j be the

error that belongs to the jth nearest neighbor of Xi for i, j = 1, . . . , n.28 Let us take the Euclidean

distance as the default metric, although nothing speaks against using any other metric.

28Here, it is implicitly assumed that each realization of X has precisely one jth nearest neighbor for j = 1, . . . , n. Further,
the nearest neighbor of each observation is the observation itself.
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For example, suppose n ≥ 3 and set k = 3. Let us assume that X1 = 1, X2 = −3, and X3 = 4

with ε1 = 0, ε2 = −1, and ε3 = 2. The 1st nearest neighbor of X1 is X1 = 1 itself and so we

have ε1,1 = ε1 = 0. The 2nd nearest neighbor of X1 is X3 = 4, which leads us to ε1,2 = ε3 = 2.

Finally, the 3rd nearest neighbor of X1 is X2 = −3 and thus we obtain ε1,3 = ε2 = −1. Now, the

corresponding quantity is T3,1 = 1
3

(
∑3

j=1 ε1,j
)2. In the same way, we obtain T3,2 = 1

3

(
∑3

j=1 ε2,j
)2

and T3,3 = 1
3

(
∑3

j=1 ε3,j
)2, which need not equal T3,1 if n > 3. This leads us to the test statistic

T =
1
n2

n

∑
k=1

n

∑
i=1

Tk,i =
1
n2

n

∑
k=1

n

∑
i=1

1
k

(
k

∑
j=1

ε i,j

)2

,

which can be re-written as

T = n

 1
n

n

∑
k=1

k
n

 1
n

n

∑
i=1

(
1
k

k

∑
j=1

ε i,j

)2
 .

The latter representation of T clarifies that

n−1T → E
(

WE2(ε | X ∈ BW(X)
))

under very mild regularity conditions concerning the errors ε1, . . . , εn, where Bw(x) ⊆ Rm with

w ∈
[
0, 1
]

and x ∈ D is the smallest ball around x such that P
(
X ∈ Bw(x)

)
= w.29 Further, W is

uniformly distributed on
[
0, 1
]

and independent of (X, ε).

Hence, if the sample size n is large, a realization of T can be understood as n times the mean

of the squared and weighted expectation of ε under the condition that X belongs to some ball.

The center of that ball is given by x, i.e., the realization of X, whereas its size is quantified by

w, i.e., the realization of W. By this means, the given test tries to detect both local deviations

and global deviations of the proposed regression function, f , from the true regression function

g. The smaller w, the more the test focuses on errors that are associated with regressor values

around x. Further, since E2(ε | X ∈ Bw(x)
)

is multiplied by w, the smaller the contribution of

the squared expectation of those errors. Hence, deviations of f from g that occur on a broader

spectrum have more weight than deviations that occur in specific regions of the support of X.

We can assume, more generally, that W is an absolutely continuous random variable between

0 and 1 with density function ψ, which leads us to the test statistic

T =
1
n2

n

∑
k=1

n

∑
i=1

ψ

(
k
n

)
1
k

(
k

∑
j=1

ε i,j

)2

.

This enables us to control the potential size of the ball around X. The more we focus on X, i.e.,

the steeper the distribution of W on the left, the better we can detect complex deviations of f
from g. However, this can be at the expense of the test power. Conversely, the more we reduce

29Once again, it is implicitly assumed that BW(X) exists, almost surely.
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Figure 5: Different choices of the weight function.

our focus, i.e., the steeper the distribution of W on the right, the stronger the power of the test

can be, but then it might happen that complex deviations are not well recognized. I recommend

to use the probability density function of the beta distribution, i.e.,

w 7→ ψ(w) ∝ (1 − w)lwr,

where l, r > −1 control how much weight we give to the left and right side of
[
0, 1
]
. The default

setting is l = r = 0, in which case we obtain the density function of the uniform distribution on[
0, 1
]
, i.e., ψ ≡ 1. Other choices of l and r are visualized in Figure 5.

In most practical applications, we estimate the regression function f by some estimator f̂ , in

which case we can approximate ε i by ε̂ i = Yi − f̂ (Xi) for i = 1, . . . , n. Thus, we finally obtain the

test statistic

T =
1
n2

n

∑
k=1

n

∑
i=1

ψ

(
k
n

)
1
k

(
k

∑
j=1

ε̂ i,j

)2

.

The distribution of T under the null hypothesis that f is valid can be very well approximated

by a residual bootstrap, which is explained in the next section.

3.1.2. Bootstrap

Let f̂ by any consistent estimator for the regression function f . A typical example is a parametric

regression function f = f (· , θ) that is continuous in θ. Then, f̂ = f (· , θ̂) is consistent for f if θ̂

is a consistent estimator for θ. We could assume, e.g., that θ̂ is an ordinary least-squares (OLS)

estimator, which minimizes θ 7→ 1
n ∑n

i=1
(
Yi − f (Xi , θ)

)2 and corresponds to the solution of

1
n

n

∑
i=1

∂

∂θ
f (Xi, θ̂) ε̂ i = 0

with ε̂ i = Yi − f (Xi , θ̂) for i = 1, . . . , n, provided that the conditions mentioned in Section 2.2.1

are satisfied. However, the given validity test applies to any choice of the parameter (vector)
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θ ∈ Θ, provided that its estimator θ̂ is consistent for θ and θ 7→ f (· , θ) is continuous. Hence,

we need not limit ourselves to an optimal regression function f among F in order to test for

validity, although this approach is natural in the light of Theorem 8. In particular, we can also

choose some explicit regression function f ∈ F , in which case f̂ ≡ f . Anyway, f̂ should be

given before starting the bootstrap. The approximate residuals are represented by ε̂1, . . . , ε̂n with

ε̂ i = yi − f̂ (xi), where (xi, yi) denotes the given observation of (Xi, Yi) for i = 1, . . . , n.

Now, one should proceed as follows:

1. Centralize the (approximate) residuals ε̂1, . . . , ε̂n.30

2. Draw N ≫ 0 bootstrap samples of size n with replacement from the vector of centralized

residuals. The given result is an n × N matrix
[
ϵi,b
]

of simulated true residuals.31

3. Simulate N realizations of Y by Yi,b = f̂
(
xi
)
+ ϵi,b for i = 1, . . . , n and b = 1, . . . , N.32

4. Apply the given estimator f̂ for the regression function f to each simulated realization of

Y by using the fixed regressor matrix x. The simulated estimates of f are f̂1, . . . , f̂N .

5. Compute the corresponding error ε̂ i,b = Yi,b − f̂b
(
xi
)

for i = 1, . . . , n and b = 1, . . . , N.

6. Compute T on the basis of ε̂1,b, . . . , ε̂n,b for each bootstrap sample b ∈
{

1, . . . , N
}

.

This leads us to N simulated realizations t1, . . . , tN of T. The cumulative distribution function

of T at s ∈ R under the null hypothesis that f is valid can be approximated by

F̂T(s) =
1
N

N

∑
b=1

1tb≤s .

In simulation studies, it can happen that the realization t of T is zero, in which case we have a

perfect fit, i.e., Yi = f̂ (Xi) and thus ε̂1, . . . , ε̂n = 0 for i = 1, . . . , n. Nonetheless, due to numerical

imprecisions, a number cruncher might come to the wrong conclusion that t is just almost zero.

In order to prevent such inaccuracies, one should set t to zero whenever t ≤ η, where η is the

machine precision. In any case, if t is de facto zero, it is clear that we should not consider f
invalid. Hence, let us define the (realized) p-value of T as

p :=

{
1 − F̂T(t), t > 0

1, t = 0
.

Now, one should reject the null hypothesis that the regression function f is valid if and only

if p falls below some low level of significance. Synonymously, one should reject the regression
model Y = f (X) + ε if p is less than the given significance level.33

30If we already have 1
n ∑n

i=1 ε̂i = 0 by construction, as in OLS regression, this step can be ignored.
31I use N = 1000 bootstrap replications in my own implementation of the validity test.
32Hence, f̂

(
xi
)

is the bootstrap counterpart of g(xi) and it is presumed that ϵi is independent of Xi for i = 1, . . . , n.
33An R implementation of this test can be found at https://github.com/floschuetze/Validity.
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3.2. Linear Regression Models

Henceforth, I will frequently refer to the true regression equation Y = g(X) + ϵ, where g is

the true regression function of Y given X and ϵ is the corresponding residual. Thus, it holds

that E(ϵ | X) = 0 and I assume that ϵ is independent of X. The true regression equation can be

considered the data-generating process of Y. By contrast, Y = f (X) + ε always represents some

regression model. More precisely, I focus on linear regression models that are specified such that

the typical exogeneity conditions of linear regression are satisfied. Hence, f (X) = α + β′X is the

(unique) optimal linear predictor of Y. Proposition 2 tells us that f (X) is the best choice, among

the set L(X) of linear predictors of Y based on X, also if we want to describe the impact of X on

Y—irrespective of whether or not the family L of linear regression functions is adequate.

3.2.1. Simple Regression

To illustrate the practical importance of the validity test, let us consider the following example:

Suppose Y = g(X) + ϵ with

x 7→ g(x) =

{
−c, x ≤ 0

c, x > 0
(7)

and c ≥ 0, where X, ϵ ∈ N (0, 1) are independent. Further, consider the simple linear regression

model Y = α + βX + ε with α = 0 and β = 2ϕ(0)c, where ϕ(0) = 0.3989 represents the density

of X at 0. Hence, the error of the given regression model is ε = Y − 2ϕ(0)cX. It is evident that

E(Y) = 0 and thus E(ε) = 0, too. Further, we have

Cov(X, ε) = E(Xε) = E(XY)− 2ϕ(0)c = 0

because

E(XY) =
∫ ∞

−∞
xE(Y | X = x)ϕ(x)dx = −c

∫ 0

−∞
xϕ(x)dx + c

∫ ∞

0
xϕ(x)dx = 2ϕ(0)c.

Further, let (X1, Y1), . . . , (Xn, Yn) be a sample of n independent observations of (X, Y).
To sum up, the linear regression model Y = 0.7979cX + ε satisfies all exogeneity conditions.

This means that X is exogenous and f (X) = 0.7979cX is the best linear predictor of Y based on

X. However, we have g(X) = E(Y | X) = ±c, depending on whether X ≤ 0 or X > 0. Hence,

for all c > 0, the conditional mean of Y essentially differs from f (X) and so the linear regression

model is clearly invalid. Actually, the true marginal impact of X on Y is ∂
∂x g(X) = 0, almost

surely, but the linear regression model suggests a marginal impact of ∂
∂x f (X) = 0.7979c > 0 for

all c > 0. Thus, we have a spurious regression, which becomes all the more serious the higher c.

Table 3 summarizes the given example. It contains the true regression equation (“True”),

the linear regression model (“Model”), the suggested and the true marginal impact of X on

Y (“Impact”), the unconditional moments and the mean conditional error (“Moments”), and

the corresponding regression measures (“Measures”). Figure 6 (i) clarifies how the regression

measures depend on the parameter c. For example, let us assume that c = 1, which leads us
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True:
Y =

{
−c + ϵ, X ≤ 0

c + ϵ, X > 0

with c ≥ 0 and X, ϵ ∈ N (0, 1) being independent.

Model: Y = α + βX + ε with α = 0 and β = 0.7979c.

Impact: ∂
∂x f (X) = 0.7979c, ∂

∂x g(X) = 0

Moments:
E(ε) = Cov(X, ε) = 0, E(ε | X) =

{
−c
(
0.7979X + 1

)
, X ≤ 0

−c
(
0.7979X − 1

)
, X > 0

Measures:
A2 =

0.6366c2(
1 + 0.3634c2

)(
1 + c2

) , R2 =
0.6366c2

1 + c2 , S2 =
c2

1 + c2 , V2 =
1

1 + 0.3634c2

Table 3: Fact sheet of the piecewise constant regression equation.

to the validity V2 = 0.7335. Hence, although the linear regression model is clearly invalid, the

coefficient of determination amounts to R2 = 0.3183, which is quite high. In fact, as is shown by

Figure 6 (i), the higher R2, i.e., the stronger the prediction power of f (X), the lower V2, i.e., the

more invalid the linear regression model. More precisely, the linear regression model is valid if

and only if it does not fit at all (c = 0), and the better it fits (c → ∞), the more it becomes invalid!

This adverse effect can be seen also in Figure 6 (ii), where the red line clarifies how R2 and V2

are connected through S2. This is a striking example of why we should not rely on R2 in order

to verify the validity of any regression model.

Figure 6 (iii) contains n = 100 simulated observations of X and Y = ±1+ ϵ, i.e., the parameter

c equals 1. The OLS estimates of α = 0 and β = 0.7979 are α̂ = −0.0002 with a standard error of

0.1199 and β̂ = 0.8047 with a standard error of 0.1120. The corresponding regression line can be

found in Figure 6 (iii), too. The ordinary R2, based on the OLS estimates, is 0.3450. This is quite

good compared with values that are usually obtained in econometric applications. Further, the

corresponding p-value of the F-test for H0 : β = 0 is virtually zero. Hence, X seems to have a

significant (linear) impact on Y. Figure 6 (iv) is a residual plot. It contains the OLS predictions

of Y together with the associated prediction errors, which look fine, too. Thus, at first glance,

the linear regression model appears to be well specified, and the usual validity checks would

never reveal that it is in fact invalid.

All in all, Figure 6 suggests that the linear regression model is appropriate, but we know that

the exact opposite is true. To be more precise, the true regression curve, which is depicted in

Figure 6 (i), is piecewise constant and it jumps up at x = 0. Thus, it is far away from being linear.

With the best will in the world, this cannot be seen just by a visual inspection both of the scatter

plot and of the residual plot. How does the validity test perform in this situation? The p-value

amounts to 0.0030. Thus, after applying the validity test, the linear regression model can be

rejected on every common significance level.
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(i) Regression measures (ii) Prediction power vs. validity

(iii) Scatter plot (iv) Residual plot

Figure 6: Piecewise constant regression equation.
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True: Y = a + bX + c(X2 − 1) + ϵ

with a, b, c ∈ R and X, ϵ ∼ N (0, 1) being independent.

Model: Y = α + βX + ε with α = a and β = b.

Impact: ∂
∂x f (X) = b, ∂

∂x g(X) = b + 2cX

Moments: E(ε) = Cov(X, ε) = 0, E(ε | X) = c(X2 − 1)

Measures:
A2 =

b2

(2c2 + 1)(b2 + 2c2 + 1)
,

R2 =
b2

b2 + 2c2 + 1
, S2 =

b2 + 2c2

b2 + 2c2 + 1
, V2 =

1
2c2 + 1

Table 4: Fact sheet of the quadratic regression equation.

Now, consider another example, in which the true regression function, g, is quadratic. More

precisely, suppose

Y = a + bX + c(X2 − 1) + ϵ (8)

with a, b, c ∈ R and X, ϵ ∼ N (0, 1) being independent. Further, let the (simple) linear regression

model be

Y = α + βX + ε (9)

with α = a and β = b. Hence, we obtain the regression error ε = c(X2 − 1) + ϵ with

E(ε) = cE
(
X2 − 1

)
+ E(ϵ) = 0

and

Cov(X, ε) = cCov
(
X, X2)+ Cov(X, ϵ) = 0 .

This means that the typical exogeneity conditions of linear regression are satisfied. Actually,

it does not matter how we choose the parameters a and b of the true regression equation (8).

It always turns out that Ŷ = α + βX is the best linear predictor of Y based on X, provided

that α = a and β = b. Moreover, Ŷ has some prediction power for all β ̸= 0, and X is always

exogenous (even if β = 0). Further, the mean conditional error is E(ε | X) = c(X2 − 1). Hence,

the linear regression model given by Equation 9 is invalid if and only if c ̸= 0. In this case, the

conditional mean of Y is a quadratic function of X and the (true) marginal impact of X on Y is
∂

∂x g(X) = b + 2cX. Thus, it depends on X itself, which is completely overlooked if we use a

linear regression model. Table 4 summarizes the given example.

Let us assume that b = 1. Figure 7 (i) shows how the regression measures depend on the

parameter c in that case, and the red line in Figure 7 (ii) clarifies how the validity and the

prediction power of the linear regression model are connected with one another for different

values of S2. Further, Figure 7 (iii) contains a scatter plot based on 100 independent copies of
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(i) Regression measures (ii) Prediction power vs. validity

(iii) Scatter plot (iv) Residual plot

Figure 7: Quadratic regression equation with a = −1 and b = 1.
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X and Y = −1 + X + 0.2(X2 − 1) + ϵ, which have been obtained by Monte Carlo simulation.

Hence, the regression coefficients are given by α = a = −1 and β = b = 1, whereas the hidden

parameter c of the true regression function amounts to 0.2. The true coefficient of determination

is R2 = 0.4808. This means that the prediction power is fairly strong. Further, the validity is

V2 = 0.9259, which indicates that the regression model is slightly invalid. The OLS estimates

of α and β, which have been used to create the regression line in Figure 7 (iii), are α̂ = −1.0273

and β̂ = 1.0533 with standard errors 0.1086 and 0.1017, respectively. The ordinary R2 based on

the OLS estimates amounts to 0.5227. Hence, the fit is very good, compared with values that

can usually be observed in real life. The F-test for the null hypothesis that β = 0 leads us to

a p-value of virtually zero. Finally, the residual plot can be found in Figure 7 (iv), where the

residuals are based on the given OLS estimates of α and β.

Both the numerical and the graphical results appear good. I think that nobody of us would

recognize that the given regression model is invalid just by applying the usual validity checks.

The graph of the true regression function, i.e., x 7→ g(x) = −1 + x + 0.2(x2 − 1), can be found in

Figure 7 (iii). According to Table 4, we have a true marginal impact of ∂
∂x g(x) = 1 + 0.4x. Hence,

especially for higher absolute values of x, the impact of X on Y is severely misunderstood when

using the linear regression model. We conclude that the linear regression model serves well in

order to predict Y, but it cannot describe the impact of X on Y, appropriately. In fact, the crux of

the matter is that we ignore the regressor X2 in Equation 9.34

Despite of the inconspicuous results of the usual validity checks, the p-value of the validity

test proposed here amounts to 0.0210. Hence, the linear regression model can be rejected on a

significance level of 5%. This holds true although the validity, V2, is quite high in this case, i.e.,

the linear regression model is not so far away from being valid.

3.2.2. Multiple Regression

Now, consider another example, namely the Cobb-Douglas production function

(x1, x2) 7→ π(x1, x2) = b0xb1
1 xb2

2

with b0, x1, x2 > 0 and b1, b2 ∈ R. Here, π(x1, x2) quantifies the total production, i.e., the output,

of some economy, given the capital input x1 and the labor input x2. Further, b0 is some scale

parameter. Thus, we can express the Cobb-Douglas production function, equivalently, by

(log x1, log x2) 7→ log π(x1, x2) = log b0 + b1 log x1 + b2 log x2 .

However, in real life, we cannot expect that the given quantities are related to one another in

that precise manner.35 Moreover, both the capital input and the labor input can be considered

stochastic, which means that the output of the economy is stochastic, too.

34However, there is no endogeneity at all, i.e., X is in fact exogenous.
35I decidedly refrain from discussing whether or not that function is appropriate at all to describe the total production

of an economy. It just serves as a standard example of a multiple regression function in econometrics.
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True: Y = a + b1K + b2L + cKL + ϵ with K
L
ϵ

 ∼ N3

 0
0
0

 ,

 1 ρ 0
ρ 1 0
0 0 1

,

where a, b1, b2, c ∈ R and −1 < ρ < 1.

Model: Y = α + β1K + β2L + ε with α = a + cρ, β1 = b1, and β2 = b2.

Impact:
∂

∂(k, l)
f (K, L) =

[
b1
b2

]
,

∂

∂(k, l)
g(K, L) =

[
b1 + cL
b2 + cK

]
Moments: E(ε) = Cov(K, ε) = Cov(L, ε) = 0, E(ε |K, L) = c(KL − ρ)

Measures:
A2 =

b2
1 + b2

2 + 2b1b2ρ[
c2(1 + ρ2) + 1

][
b2

1 + b2
2 + 2b1b2ρ + c2

(
1 + ρ2

)
+ 1
]

R2 =
b2

1 + b2
2 + 2b1b2ρ

b2
1 + b2

2 + 2b1b2ρ + c2
(
1 + ρ2

)
+ 1

,

S2 =
b2

1 + b2
2 + 2b1b2ρ + c2(1 + ρ2)

b2
1 + b2

2 + 2b1b2ρ + c2
(
1 + ρ2

)
+ 1

, V2 =
1

c2(1 + ρ2) + 1

Table 5: Fact sheet of the Cobb-Douglas regression equation.

Thus, let Y, K, and L be the (natural) logarithms of the output, the capital input, and the labor

input, respectively, of the given economy. Suppose

Y = a + b1K + b2L + cKL + ϵ (10)

with a = log b0 and 
K
L
ϵ

 ∼ N3




0

0

0

 ,


1 ρ 0

ρ 1 0

0 0 1


 ,

where c ∈ R and −1 < ρ < 1. Thus, log-capital input and log-labor input are correlated for

ρ ̸= 0. Furthermore, their impact on the log-output of the economy is not linear if c ̸= 0. In that

case, there is a synergy of capital and labor, which is quantified by the parameter c.

Consider the (multiple) linear regression model

Y = α + β1K + β2L + ε . (11)

The parameters α = a + cρ, β1 = b1, and β2 = b2 lead us to ε = −cρ + cKL + ϵ, where the

regression error satisfies the typical exogeneity conditions of linear regression, i.e.,

1. E(ε) = −cρ + cE(KL) + E(ϵ) = −cρ + cρ = 0,
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(i) Regression measures (ii) Prediction power vs. validity

Figure 8: Cobb-Douglas regression with b1 = 0.25, b2 = 0.75, and ρ = 0.5.

2. Cov(K, ε) = E(Kε) = cE(K2L) + E(Kϵ) = 0, and

3. Cov(L, ε) = E(Lε) = cE(KL2) + E(Lϵ) = 0.

This holds true irrespective of how we choose a, b1, b2, c, and ρ, i.e., the parameters of the true

regression equation (10). Hence, the regressors K and L are always exogenous. Put another way,

there is no endogeneity—although we ignore KL in our linear regression model. Further, the

regression parameters β1 and β2 of the linear regression model (11), in fact, coincide with the

regression parameters b1 and b2, respectively, of the true (but nonlinear) regression equation.

Despite all this, the linear regression model is still invalid if c ̸= 0. Table 5 contains the fact sheet

of the Cobb-Douglas regression equation.36

The mean conditional error amounts to E(ε |K, L) = c(KL − ρ). Suppose there is a synergy of

capital and labor, i.e., c > 0. Then, the log-output of the economy is systematically overestimated

by the linear regression model if KL < ρ, whereas it is systematically underestimated if KL > ρ.

Further, Table 5 reveals that the marginal impact of log-capital and of log-labor on the log-output

of the economy is always underestimated by an amount of cL and cK, respectively.

For example, let us assume that b1 = 0.25, b2 = 0.75, and ρ = 0.5. Hence, log-capital and

log-labor are positively correlated, where labor has a stronger impact on output than capital.

Figure 8 (i) contains the corresponding regression measures. As it can be seen, even for higher

absolute values of c, the prediction power of the linear regression model, i.e., R2, can still be

satisfactory, although the model becomes highly invalid. Once again, this underpins our insights

of Section 2.3, where it has been shown that R2 shall not be used as a validity measure.

Now, consider a Monte Carlo simulation of n = 100 independent observations of (K, L, Y)
with a = 0, b1 = 0.25, b2 = 0.75, ρ = 0.5, and c = 0.25, in which case the linear regression model

is invalid. The resulting OLS estimates of α = 0.125, β1 = 0.25, and β2 = 0.75 are α̂ = 0.1314,

β̂1 = 0.3151, and β̂2 = 0.9081, respectively, where the corresponding standard errors are 0.1026,

36The given regression measures can be calculated by applying Isserlis’ theorem.

35



Frahm, 2024 • A Test for the Validity of Regression Models

Figure 9: Scatter plot for the Cobb-Douglas regression, where the plane represents the fitted
linear regression function and the bent surface illustrates the true regression function.

0.1157, and 0.1301. Further, the true coefficient of determination is 0.4298, whereas the ordinary

R2, obtained by the OLS estimates, even amounts to 0.5522. Once again, the F-test leads us to

a p-value of virtually zero. The scatter plot in Figure 9 contains the realized data points in R3.

One can see that the graph of the linear regression function, i.e., the plane, which is based on the

given OLS estimates, fits good to the data.

Figure 10: Residual plot for the Cobb-Douglas regression.

Figure 10 contains the corresponding residual plot. The linear predictions of the log-output

(based on the OLS estimates) can be found on the x-axis and the associated prediction errors are

given on the y-axis.37 The quantitative results look fine and also a visual inspection of the data

does not reveal any anomaly. However, we already know that the linear regression model is

invalid, since the relationship between log-output, log-capital, and log-labor is nonlinear. This is

illustrated by the bent surface in Figure 9, which represents the true Cobb-Douglas regression

37An obvious advantage of this residual plot is that it can be applied for an arbitrary number of regressors.
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function (k, l) 7→ 0.25k + 0.75l + 0.5kl. Now, how does the validity test perform in that situation,

where we now apply a multiple regression? We obtain a p-value of 0.0170. Thus, again we can

clearly reject the linear regression model on a significance level of 5%.

3.3. Size and Power

Here, I present the size and power of the validity test for the three examples discussed in the

previous sections, i.e.,

1. the piecewise constant regression equation,

2. the quadratic regression equation, and

3. the Cobb-Douglas regression equation.

The given results are obtained by Monte Carlo simulation, where each setting consists of the

following attributes:

• The example e ∈
{

1, 2, 3
}

, containing the true regression equation and the corresponding

linear regression model.

• The parameter c ∈ Ce of the true regression equation, where the parameter set Ce depends

on the given example e, viz.,

– C1 =
{

0, 0.25, 0.5, 0.75, 1
}

,

– C2 =
{
− 0.4,−0.2, 0, 0.2, 0.4

}
, and

– C3 =
{
− 0.5,−0.25, 0, 0.25, 0.5

}
.

• The sample size n ∈
{

50, 100, 250, 500, 1000
}

.

The number of Monte Carlo repetitions in every setting amounts to R and each repetition r ∈{
1, . . . , R

}
creates n independent observations of (X, Y). I have chosen the uniform distribution

on
[
0, 1
]

for W, i.e., the weight function ψ ≡ 1, in order to demonstrate the default setting of the

test. The regression model is rejected if the p-value in Repetition r falls below the level of 5%.

Table 6 contains the results of the simulation study with R = 1000 repetitions, where the true

regression equations can be found on the upper left of each panel. The linear regression models

are valid if and only if c = 0. Hence, this table contains the size, i.e., the rejection rate if c = 0,

and the power, i.e., the rejection rate in the case of c ̸= 0, for each combination of c and n. On

the left-hand side one can find also the accuracy, A2, the prediction power, R2, the explanation

power, S2, and the validity, V2, for each parameter c that is taken into consideration.

The size of the validity test is always about 5% and thus it satisfies the nominal significance

level. Moreover, its power is quite strong even for n = 50. This holds true also for the Cobb-

Douglas regression equation, which involves two regressors. In the case of Y = ±c + ϵ, which

is depicted in the first panel of Table 6, we can see that the validity, V2, decreases with the

prediction power, R2, of the linear regression model. This counterintuitive relationship between
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Measure Sample size

c A2 R2 S2 V2 50 100 250 500 1000

Piecewise constant regression equation (Y = ±c + ϵ)

0 0.0000 0.0000 0.0000 1.0000 0.0430 0.0540 0.0440 0.0540 0.0480
0.25 0.0366 0.0374 0.0588 0.9778 0.0990 0.1550 0.3480 0.6770 0.9400
0.50 0.1167 0.1273 0.2000 0.9167 0.2680 0.5390 0.9330 0.9990 1.0000
0.75 0.1903 0.2292 0.3600 0.8303 0.5520 0.8930 1.0000 1.0000 1.0000

1 0.2335 0.3183 0.5000 0.7335 0.8060 0.9950 1.0000 1.0000 1.0000

Quadratic regression equation (Y = a + bX + c(X2 − 1) + ϵ)

−0.40 0.3265 0.4310 0.5690 0.7576 0.6860 0.9680 1.0000 1.0000 1.0000
−0.20 0.4452 0.4808 0.5192 0.9259 0.2510 0.4650 0.8870 0.9960 1.0000

0 0.5000 0.5000 0.5000 1.0000 0.0400 0.0520 0.0560 0.0630 0.0470
0.20 0.4452 0.4808 0.5192 0.9259 0.2410 0.4540 0.8800 0.9960 1.0000
0.40 0.3265 0.4310 0.5690 0.7576 0.7080 0.9490 1.0000 1.0000 1.0000

Cobb-Douglas regression equation (Y = a + b1K + b2L + cKL + ϵ)

−0.50 0.2913 0.3824 0.5294 0.7619 0.5130 0.8520 0.9980 1.0000 1.0000
−0.25 0.3986 0.4298 0.4711 0.9275 0.1870 0.3520 0.7110 0.9670 1.0000

0 0.4483 0.4483 0.4483 1.0000 0.0520 0.0520 0.0440 0.0550 0.0490
0.25 0.3986 0.4298 0.4711 0.9275 0.1850 0.3260 0.7050 0.9590 1.0000
0.50 0.2913 0.3824 0.5294 0.7619 0.5070 0.8160 0.9980 1.0000 1.0000

Table 6: Size (c = 0) and power (c ̸= 0) of the validity test.

V2 and R2 has already been discussed in Section 3.2.1. However, the validity test is not affected

by R2. That is, it reliably indicates the invalidity of the regression model even if R2 is high.

In many econometric applications, the sample size is quite small. More precisely, one often

uses quarterly data for regression analysis, in which case the validity test might be questionable.

The results of the Monte Carlo study provided in Table 6 are based on the assumption that the

explanation power of X, i.e., S2, is quite low. To be more precise, the variance of the error ϵ of

the true regression equation Y = g(X) + ϵ equals 1, which is relatively high, compared with the

variance of g(X). Hence, it seems reasonable to ask whether or not the validity test works well

in small samples, given that the variance of ϵ is less than 1. For example, suppose we have only

5 years of quarterly data, i.e., n = 20, and that the true regression equation is Y = g(X) + ϵ with

Var(ϵ) = τ2 for 0 ≤ τ ≤ 1. If τ = 0, the explanation power amounts to 1—except for Y = ±c + ϵ

with c = τ = 0, in which case S2 is not defined at all because Var(Y) = 0. By contrast, in the

case of τ = 1 we are, basically, in the same situation as in Table 6, but now the sample size is

much smaller. Table 7 contains the given results of a Monte Carlo study based on R = 10000

repetitions for each combination of c and τ. Although the sample size, n, is very small, the

rejection rates are satisfactory even for relatively high levels of τ. In particular, despite of the

small sample size, the validity test fairly satisfies its nominal significance level of 5%.
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τ

c 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Piecewise constant regression equation (Y = ±c + ϵ)

0 0.0000 0.0461 0.0546 0.0474 0.0483 0.0443 0.0509 0.0538 0.0490 0.0484 0.0500
0.25 0.9943 0.8734 0.4365 0.2253 0.1406 0.1075 0.0893 0.0797 0.0727 0.0710 0.0605
0.50 0.9944 0.9808 0.8724 0.6408 0.4361 0.3082 0.2272 0.1782 0.1501 0.1246 0.1125
0.75 0.9951 0.9916 0.9626 0.8777 0.7171 0.5645 0.4362 0.3384 0.2792 0.2196 0.1991

1 0.9949 0.9929 0.9814 0.9495 0.8716 0.7544 0.6500 0.5333 0.4361 0.3600 0.3054

Quadratic regression equation (Y = a + bX + c(X2 − 1) + ϵ)

−0.40 0.9997 0.9987 0.9786 0.9151 0.8033 0.6902 0.5675 0.4745 0.4062 0.3406 0.2843
−0.20 0.9999 0.9782 0.8009 0.5721 0.4008 0.2868 0.2221 0.1751 0.1460 0.1205 0.1141

0 0.0000 0.0468 0.0460 0.0501 0.0504 0.0499 0.0498 0.0538 0.0492 0.0523 0.0506
0.20 1.0000 0.9782 0.8054 0.5675 0.3988 0.2862 0.2219 0.1812 0.1457 0.1256 0.1130
0.40 0.9998 0.9990 0.9809 0.9190 0.7976 0.6861 0.5720 0.4783 0.3927 0.3331 0.2857

Cobb-Douglas regression equation (Y = a + b1K + b2L + cKL + ϵ)

−0.50 0.8627 0.8498 0.7810 0.6923 0.5987 0.5036 0.4184 0.3617 0.3089 0.2618 0.2274
−0.25 0.8612 0.7768 0.5912 0.4198 0.2971 0.2247 0.1865 0.1553 0.1319 0.1226 0.1020

0 0.0000 0.0568 0.0606 0.0639 0.0574 0.0637 0.0643 0.0593 0.0604 0.0631 0.0560
0.25 0.8670 0.7799 0.5860 0.4125 0.2960 0.2281 0.1831 0.1503 0.1367 0.1169 0.1045
0.50 0.8632 0.8476 0.7838 0.6912 0.5852 0.4961 0.4129 0.3607 0.3017 0.2639 0.2232

Table 7: Rejection rates for n = 20.

4. Other Specification Tests

The validity test presented here shall be distinguished from other specification tests that can be

found in the literature. For this purpose, let X = (X1, . . . , Xm
)

be some vector of regressors and

Y be the dependent variable. We call the regression model Y = f (X) + ε well specified if and

only if the joint distribution of X and ε satisfies some specific condition A.38 For example, A can

be some regression property that is discussed in Section 2.6, e.g., that the regression model is

valid or optimal, or that the regressors are exogenous, given the chosen regression function f .

Suppose we want to test for the null hypothesis A, i.e., that the given regression model is

well specified. Then, we can apply any other test for the null hypothesis B ⊃ A, where “B ⊃ A”

means that B is implied by A.39 For example, according to Figure 4, we can test for validity by

testing for optimality or for exogeneity, etc. Nonetheless, we can expect that a genuine test for B
does not perform as well as a genuine test for A if our aim is to reject A. More precisely, if the

regression model Y = f (X) + ε satisfies B but not A, then the test that is constructed in order to

test for the null hypothesis B will not reject the null hypothesis A although A is false.

The reader might ask why we should apply a genuine test for B and not a genuine test for

A if we are actually interested in testing A? There are many responses to this question. For

example, it could be that we already have a test for B and thus decide to apply the same test for

A just for practical reasons. Another possibility could be that constructing a genuine test for A

38More generally, we could also consider some regression model involving X, Y, and ε.
39Put another way, B is a necessary condition for A.
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is difficult, whereas testing for B is easy. Anyway, I think that everybody of us agree that—for

pure statistical reasons—it is better to apply a genuine test for A and not for B ⊃ A if we actually

want to test for A. However, most specification tests that can be found in the literature in fact

suffer from that particular problem, i.e., they do not represent genuine tests for validity.

4.1. Linear-Regression Tests

Theorem 8 tells us that optimality is a necessary condition for validity. Thus, we can test for

the optimality of f (Hypothesis B) in order to test for its validity (Hypothesis A). However, a

genuine test for optimality is not a genuine test for validity. For example, let Y = a + b′X + ϵ

be a linear regression model where a and b are such that the typical exogeneity conditions are

satisfied. The regression parameters are uniquely determined by b = Var(X)−1Cov(X, Y) and

a = E(Y)− b′E(X). Further, due to Theorem 6, f̂ (X) = a + b′X is the unique optimal predictor

of Y among the set L(X) of linear predictors based on X. Write b = (b1, b2) and β = (β1, β2),

where the parameter vectors b1 and β1 refer to the same subvector X1 of X = (X1, X2).

Now, many specification tests are based on the hypotheses

H0: b2 = β2 vs.

H1: b2 ̸= β2.

Thus, if H0 is false, f (X) = α + β′X cannot coincide with f̂ (X) = a + b′X.40 This means that the

linear predictor α + β′X cannot be optimal. Hence, the linear regression model Y = α + β′X + ε

cannot be valid either and so it should be rejected.

A particular version of these kind of specification tests (see, e.g., Greene, 2012, p. 177) is given

by

H0: b2 = 0 vs.

H1: b2 ̸= 0.

Here, H0 states that the regressor vector X2 can be dispensed with in order to predict Y by X. If

H0 is false, we should reject the linear regression model Y = α + β′
1X1 + ε, since the predictor

f (X) = α + β′
1X1 is suboptimal given the set S =

{
X1, . . . , Xm

}
of regressors.41

None of these specification tests refer to validity, since the regression model Y = α + β′X + ε

can very well be invalid even if the null hypothesis H0 is true. Actually, if we cannot reject

H0, we may only accept the hypothesis that α + β′X is the (unique) optimal predictor of Y,

among all linear predictors based on X. Otherwise, we may reject also the null hypothesis that

Y = α + β′X + ε is valid, but the power of such a validity test might be very poor. Another

drawback is that these specification tests are restricted to linear regression models.

40Since the covariance matrix of X is positive definite, α + β′X must differ from a + b′X if H1 is true.
41Nonetheless, the same predictor can still be optimal if our set of regressors contains only the regressors in X1.
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4.2. Artificial-Regression Tests

Now, assume that X ̸= 0 is a random variable and consider a (simple) linear regression model

Y = α + βX + ε with α, β ∈ R. Further, suppose the parameter γ̂ of the quadratic regression

model Y = α + βX + γ̂X2 + ϵ minimizes the mean square error E(ϵ2), where the parameters

α and β stem from the linear regression model. The expanded model represents an artificial

regression (MacKinnon, 1992). To sum up, the family of regression functions that is taken into

consideration is

F =
{

x 7→ f (x) = α + βx + γx2 : γ ∈ R
}

,

where f̂ ∈ F with x 7→ f̂ (x) = α + βx + γ̂x2 is optimal among F . Thus, we should reject the

linear regression model Y = α + βX + ε if γ̂ ̸= 0 because then γ̂X2 ̸= 0, i.e., f (X) = α + βX ̸=
α + βX + γ̂X2 = f̂ (X). Similarly, Ramsey’s (1969) RESET tests whether the prediction power of

α + βX (with β ̸= 0) can be increased by adding regressors of the form (α + βX)k with k > 1.

Once again, these kind of specification tests refer to the optimality of Y = α + βX + ε, not to its

validity. Another problem is that the power of tests based on artificial regressions essentially

depend on the expansion of Y = α + βX + ε, i.e., on the artificial regression equation.

The validity test developed here goes into another direction. In order to test for validity, we

need not find any alternative model whose predictor has a stronger prediction power than the

predictor of the original model. We have seen that the specification tests discussed above just aim

at rejecting the hypothesis that f (X) is optimal among F (X), but the problem is that optimality is

weaker than validity if F is inadequate. Hence, if F is not rich enough, specification tests based

on the prediction power might be less powerful than genuine validity tests. Nonetheless, a fair

comparison is nearly impossible because the power of specification tests that are based on the

prediction power essentially depends on the alternative model that is taken into consideration.

More precisely, the more we can reduce the mean square error of an invalid (linear) regression

model by applying some alternative (nonlinear) regression model, the more powerful is the test

for optimality. See, e.g., Greene (2012, Section 5.9) for a further discussion of that topic.

4.3. The Durbin-Wu-Hausman Test

A well-known further specification test is developed by Hausman (1978). This test presumes that

we propose a parametric regression function f (· , θ) where the parameter vector θ is not explicitly

specified. Instead, it is assumed that we have some estimator θ̂0 for θ that is asymptotically

efficient and thus consistent under the null hypothesis H0 that f (· , θ) is valid, whereas θ̂0 is

inconsistent if f (· , θ) is invalid. Further, there is another estimator θ̂1 for θ that is consistent

both under H0 and under some particular alternative hypothesis H1, for which reason it is

asymptotically inefficient under H0. Thus, if H0 is true, we have

n
(
θ̂1 − θ̂0

)′V−1(θ̂1 − θ̂0
)
⇝ χ2

q
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under the usual conditions of asymptotic theory, where V is the asymptotic covariance matrix

of
√

n
(
θ̂1 − θ̂0

)
under H0 and q is the number of parameters.42 By contrast, if H1 is true, the test

statistic should exceed a critical threshold, given that the sample size is large enough.

There is a close relationship between the test proposed by Hausman and other specification

tests already developed by Durbin (1954) and Wu (1973), for which reason the presented test

is called Durbin–Wu–Hausman (DWH) test. Obviously, the DWH test requires us to specify

some parametric family F of regression functions. Further, there is a general shortcoming due

to the very construction of the test statistic: The DWH test is just designed to detect significant

deviations of θ̂1 from θ̂0, but such deviations need not occur at all if f (· , θ) is invalid, i.e., if H0 is

violated. Hence, the DWH test is not a genuine test for validity. This shall be demonstrated by

its most well-known implementation, namely the Hausman test for exogeneity.

Consider a linear regression model Y = α + β′X + ε with X = (X1, . . . , Xm) and

β = Cov(Z, X)−1Cov(Z, Y),

where Z = (Z1, . . . , Zm) is any vector of instrumental variables.43 It is implicitly assumed that

the covariance matrices Cov(Z, X) and Var(X) are regular. The given specification implies

that Cov(Z, ε) = 0, i.e., the instrumental variables are exogenous just by construction. Further,

consider the vector

β0 = Var(X)−1Cov(X, Y).

Now, the hypotheses are given by

H0 : β = β0 vs.

H1 : β ̸= β0.

The regressors X1, . . . , Xm are exogenous under H0, whereas some regressor is endogenous

under H1. Hence, if the null hypothesis is true, the OLS estimator β̂0 is consistent, since it

estimates β0 = β. Further, if we assume that the random vector (X, Y, Z) is normally distributed,

β̂0 is even asymptotically efficient. In any case, the OLS estimator becomes inconsistent under

H1. By contrast, the instrumental-variables (IV) estimator β̂1 is consistent both under H0 and

under H1 because it always estimates β. However, β̂1 is asymptotically inefficient under H0.

To sum up, all prerequisites required by Hausman (1978) are satisfied and so we can test for

the null hypothesis that the linear regression model is well specified—in the sense that β = β0,

i.e., that the components of X are exogenous. According to Theorem 8, exogeneity is equivalent

to optimality if we focus on linear regression. Nonetheless, as we have already seen above, a

linear regression model can be highly invalid although the chosen regressors are exogenous, i.e.,

the given regression model is optimal. Hence, the DWH test is not a genuine test for validity.

42Here, it is implicitly assumed that V has full rank. Otherwise, we have to choose the Moore-Penrose inverse of V, in
which case the number of degrees of freedom of χ2 reduces to rk V.

43Some components of Z can be identical with the corresponding components of X, but it must hold that Z ̸= X.
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4.4. The Harvey-Collier Test

Another well-known specification test is the ψ-test proposed by Harvey and Collier (1977). It is

based on forecast errors. The authors rely on the Gaussian linear model, i.e., they presume that

the Gauss-Markov assumption is satisfied, and that ε has a normal distribution conditional on

X. Before applying the test, the (fixed) regressor matrix x, together with the associated sample

realizations y1, . . . , yn of Y, is arranged in ascending order, along some pre-specified column of

x. Hence, if m > 1, i.e., in the case of a multiple regression, one has to choose a leading regressor.

Then, linear (ex-post) forecasts for ym+2, . . . , yn are calculated, recursively, by taking the first

m + 1, . . . , n − 1 observations. The corresponding n − m − 1 forecast errors um+2, . . . , un are used

to calculate the Harvey-Collier test statistic

ψ =

√
n − m − 2
n − m − 1

∑n
i=m+2 ui√

∑n
i=m+2

(
ui − 1

n−m−1 ∑n
i=m+2 ui

)2
.

According to Harvey and Collier (1977), it holds that ψ ∼ tn−m−2, given that the Gaussian linear

model is satisfied. Hence, this model can be rejected if ψ exceeds some critical threshold.

That test differs in several aspects from the validity test presented in this work:

1. One must specify some leading regressor in order to apply the test in the case of m > 1.

2. The Harvey-Collier test is designed to falsify the Gaussian linear model, which is even

stronger than strict exogeneity and hardly satisfied in most applications of econometrics.

3. Its power is weak if the forecast errors are symmetrically distributed around 0, which can

very well happen if the true regression function is neither convex nor concave.

Anyway, we conclude that the Harvey-Collier test is not a genuine validity test.

4.5. Utts’ Rainbow Test

The rainbow test developed by Utts (1982) appears to be similar to the validity test developed

here. However, once again its basic assumption is that the sample observations Y1, . . . , Yn of Y
with n > nS > m + 1 obey the Gaussian linear model. It consists of two OLS regressions: The

first one is made by using the entire sample with size n, while the second one is based on a

subsample with size nS, where the observations of X in that subsample are selected from some

central region of X. The test statistic is

F =
nS − m − 1

n − nS

(
SSE
SSES

− 1
)

,

where SSE stands for the sum of squared errors of the entire sample and SSES denotes the sum of

squared errors of the subsample. According to Utts (1982), it holds that F ∼ Fn−nS
nS−m−1, provided

that the Gaussian linear model is satisfied.
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Despite of the similarities, the rainbow test has little to do with the validity test presented

here—except for the very fact that subsamples are also created to apply the test. On the one hand,

this test is based on the very strong assumption that the Gaussian linear model is satisfied. On

the other hand, it is an analysis-of-variance test, which refers to (conditional) homoscedasticity

rather than validity. However, a valid regression model need not possess a homoscedastic error,

i.e., it is not required that Var(ε | X) = σ2 > 0. We conclude that the rainbow test is a test for

the null hypothesis that the Gaussian linear model is satisfied, but this is much stronger than

validity. Hence, it is not a genuine validity test, either.

4.6. Stute’s Cusum Test

This test is developed by Stute (1997) and further studied by Stute et al. (1998a,b). He proposes

a cusum approach for testing the validity of parametric regression functions. His test is based

on the empirical process

R(x) =
1√
n

n

∑
i=1

1Xi≤x ε̂ i

for all x ∈ Rm, which is marked by the (approximate) errors ε̂1, . . . , ε̂n with ε̂ i = Yi − f (Xi , θ̂)

for i = 1, . . . , n. Two metrics are considered for testing the null hypothesis that f (· , θ) is valid:

1. The Kolmogorov-Smirnov (KS) statistic D = maxx∈S |R(x)| with S =
{

X1, . . . , Xn
}

and

2. the Cramér-von-Mises (CvM) statistic

W2 =
1
n

n

∑
i=1

R2(Xi).

Stute et al. (1998a) report that the KS statistic and the CvM statistic are comparably well in the

univariate case, whereas the CvM statistic seems to be favorable in the multivariate case.

A closer look reveals that W2 is similar to T, i.e., the test statistic developed in this work: Let{
ε̂ i,1, . . . , ε̂ i,ki

}
be the set of all errors associated with the sample observations of X that are less

than or equal to Xi for i = 1, . . . , n.44 This leads us to R2(Xi) =
1
n

(
∑ki

j=1 ε̂ i,j
)2 and thus

W2 =
1
n2

n

∑
i=1

(
ki

∑
j=1

ε̂ i,j

)2

.

In particular, in the univariate case, i.e., m = 1, we simply have

W2 =
1
n2

n

∑
i=1

(
i

∑
j=1

ε̂∗j

)2

,

where ε̂∗1, . . . , ε̂∗n are the errors associated with the sample observations of X after they have been

sorted in ascending order. Stute et al. (1998a) consider different bootstrap techniques in order to

44Here, “less than or equal to” is understood in the usual, i.e., componentwise, sense of matrix algebra.
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approximate the distribution of their test statistics under the null hypothesis of validity. One of

these techniques corresponds to the residual bootstrap explained in Section 3.1.2.

The essential difference between T and W2 is threefold:

1. T is based on the squared sums of residuals that can be found in some neighborhood of

each observation of X, whereas W2 considers the squared sums of all residuals that are

associated with the sample observations of X that are less than or equal to themselves.

2. When computing T, the squared sums of residuals are divided by k ≤ n, i.e., the number

of residuals in each neighborhood, whereas they are divided by n when computing W2.

3. T makes use of n2 sums of residuals, whereas W2 involves only n sums of residuals.

In contrast to most other specification tests in the literature, Stute’s test is in fact a genuine test

for the validity of regression models. However, it is not the only validity test that is based on

cumulative sums of regression errors. See González-Manteiga and Crujeiras (2013) for a broad

overview.45 These tests seem to be largely overlooked in the empirical literature.

5. Conclusion

Evaluating regression models by applying the usual validity checks of regression analysis can

lead us to highly erroneous conclusions. Measures of prediction power, or of goodness of fit, are

misleading when trying to describe the impact of some explanatory variable(s) on a dependent

variable. Regression models with a strong prediction power can be highly inappropriate for the

given purpose, even if they fit well to the data. Conversely, valid regression models may have a

weak prediction power and they even need not fit at all. Also the typical exogeneity conditions

of linear regression are far from sufficient to guarantee that the given regression model is valid.

Genuine tests for the validity of regression models can rarely be found in the literature, and a

visual inspection of the data often leads nowhere. The validity test developed here is simple

and can be applied to all types of regression models with any number of regressors. It is very

powerful in large samples and performs well also in small samples, given that the validity of the

regression model is sufficiently low and that there is not too much noise in the true regression

equation. Hence, the presented test pursues its mission and thus it should be used whenever

the main goal of regression is description rather than prediction.
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Proofs

Proof of Proposition 2

We have

E
(
(Y − f (X))2) = E

(
(Y − g(X))2)+ 2E

(
(Y − g(X))(g(X)− f (X))

)
+ E

(
(g(X)− f (X))2)

with

E
(
(Y − g(X))(g(X)− f (X))

)
= E

(
E
(
(Y − g(X))(g(X)− f (X)) | X

))
= E

(
(g(X)− g(X))(g(X)− f (X))

)
= E

(
0(g(X)− f (X))

)
= E(0) = 0,

i.e.,

E
(
(Y − f (X))2) = E

(
(Y − g(X))2)+ E

(
(g(X)− f (X))2).

This is equivalent to

E(ε2) = E(ϵ2) + E
(
(ε − ϵ)2)

for all f ∈ G, which implies E(ϵ2) ≤ E(ε2). Hence, E
(
(Y − f (X))2) is minimal if and only if

E
(
(g(X)− f (X))2) is minimal.

Proof of Theorem 1

In the case of R2 < 1, we obtain

1 − S2

1 − R2 =
E(ϵ)/Var(Y)
E(ε)/Var(Y)

=
E(ϵ)
E(ε)

= V2.

By contrast, R2 = 1 implies that ε = 0 and thus V2 = 1. Further, Proposition 2 leads us to S2 = 1,

too. The same proposition implies also that R2 ≤ S2, where R2 = S2 if and only if V2 = 1.

Proof of Theorem 2

(i) We have E(ε̂) = E
(
E(ε̂ | X)

)
= E(0) = 0.

(ii) By applying the variance decomposition theorem, we conclude that

Var(ε̂) = E
(
Var(ε̂ | X)

)
+ Var

(
E(ε̂ | X)

)
= E

(
Var(ε̂ | X)

)
+ Var(0) = E

(
Var(ε̂ | X)

)
.
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(iii) From the law of total expectation and E(ε̂) = 0, we conclude that

Cov(h(X), ε̂) = E
(
h(X)ε̂

)
= E

(
E(h(X)ε̂ | X)

)
= E

(
h(X)E(ε̂ | X)

)
= E

(
h(X)0

)
= E(0) = 0 .

(iv) Since f̂ is valid, we have f̂ = g. Thus, due to Proposition 2, f̂ is optimal among F .

(v) Let f̃ ∈ F be optimal among F , too, and ε̃ = Y − f̃ (X) be the associated regression error.

Then,

E(ε̃2) = E
(
(Y − f̃ (X))2) = E

([
(Y − f̂ (X)) + ( f̂ (X)− f̃ (X))

]2
)

= E
(
ε̂2)+ 2E

((
f̂ (X)− f̃ (X)

)
ε̂
)
+ E

(
( f̂ (X)− f̃ (X))2

)
with

E
((

f̂ (X)− f̃ (X)
)
ε̂
)
= E

(
f̂ (X)ε̂

)
− E

(
f̃ (X)ε̂

)
= 0,

since both f̂ (X) and f̃ (X) are square integrable. Thus, we obtain

E(ε̃2) = E
(
ε̂2)+ E

((
f̂ (X)− f̃ (X)

)2
)

and because f̃ is optimal, too, it must hold that E(ε̃2) = E(ε̂2). We conclude that

E
((

f̂ (X)− f̃ (X)
)2
)
= 0,

which means that f̃ (X) = f̂ (X) = g(X) and thus ε̃ = ε̂. Hence, also the regression model

Y = f̃ (X) + ε̃ is valid.

Proof of Theorem 3

(i) Since ε is independent of X, we have E(ε | X) = E(ε) = 0.

(ii) Suppose E(ε) = 0 and Var(ε | X) = Var(ε), which implies that Var(ε | X) is deterministic.

Thus, we have

E
(
Var(ε | X)

)
= Var(ε | X) = Var(ε),

and from Theorem 5 (ii) it follows that f is valid.

(iii) Fix any sample observation (Xi, Yi) and let ε i = Yi − f (Xi) be the associated sample error.

If X is strictly exogenous, we have

E(ε i | Xi) = E
(
E(ε i |X) | Xi

)
= E(0 | Xi) = 0

and from (Xi, Yi) ∼ (X, Y) we conclude that (ε i, Xi) ∼ (ε, X), i.e., E(ε | X) = 0.

(iv) The Gaussian linear model implies that X is strictly exogenous and thus also that f is valid.
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Proof of Theorem 4

It is well-known that the random vector (X, Y) is elliptically distributed, too. Further, Var(Z) > 0

implies that Var(X) > 0, i.e., the exogeneity conditions given by System 4 are equivalent to

β = Var(X)−1Cov(X, Y) and α = E(Y)− β′E(X). Now, from Corollary 5 in Cambanis et al.

(1981), we conclude that E(Y | X) = α + β′X, which means that the linear regression model

is valid. Conversely, if the linear regression model is valid, Theorem 2 (i) and Corollary 2 (ii)

guarantee that the exogeneity conditions given by System 4 are satisfied.

Proof of Theorem 5

(i) This is an immediate consequence of Proposition 2.

(ii) From the variance decomposition theorem, we conclude that

Var(ε) = E
(
Var(ε | X)

)
+ Var

(
E(ε | X)

)
.

Therefore, Var(ε) = E(Var(ε | X)) implies that Var
(
E(ε | X)

)
= 0, i.e., E(ε | X) = E(ε) = 0,

which means that the regression model is valid. Conversely, if the regression model is

valid, we obtain E(ε) = 0 by Theorem 2 (i) and Var(ε) = E(Var(ε | X)) by Theorem 2 (ii).

(iii) We already know from Proposition 2 that

E
(
(Y − f (X))2) = E

(
(Y − g(X))2)+ E

(
(g(X)− f (X))2)

for all f ∈ G. Thus, if E(ε2) = E
(
(Y − f (X))2) = E

(
(Y − g(X))2), we have

E
(
(g(X)− f (X))2) = 0

and so f (X) = g(X). Hence, the regression model Y = f (X) + ε is valid. Conversely, if it

is valid, i.e., f (X) = g(X), it follows that E(ε2) = E
(
(Y − g(X))2).

Proof of Proposition 3

We have

E(ε̂2) = E(ε̃2) + 2E
(
( f̃ (X)− f̂ (X))ε̃

)
+ E

(
( f̃ (X)− f̂ (X))2),

where ε̂ = Y − f̂ (X), and if ε̃ = Y − f̃ (X) is orthogonal to F (X), we obtain

E
(
( f̃ (X)− f̂ (X))ε̃

)
= E

(
f̃ (X)ε̃

)
− E

(
f̂ (X)ε̃

)
= 0 − 0 = 0 .

Then, it holds that

E(ε̂2) = E(ε̃2) + E
(
( f̃ (X)− f̂ (X))2).
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Since the regression function f̂ is optimal, we must have E(ε̂2) ≤ E(ε̃2), i.e.,

E
(
( f̃ (X)− f̂ (X))2) = 0 .

However, this cannot be true because f̃ ̸= f̂ . Thus, ε̃ cannot be orthogonal to F (X).

Proof of Theorem 7

Suppose F is adequate and let f̂ be the valid element of F . Due to Theorem 2 (iv,v), f̂ is the

unique optimal regression function among F and Corollary 2 (v) asserts that ε̂ = Y − f̂ (X) is

orthogonal to F (X). Now, consider any regression function f̃ ∈ F . From Proposition 3 we

conclude that ε̃ = Y − f̃ (X) is orthogonal to F (X) only if f̃ = f̂ . This means that f̂ is the unique

element of F that produces an error being orthogonal to F (X).

Proof of Theorem 9

Let us start with the second statement and choose the first residual, ε1, without loss of generality.

It holds that

P(ε1 ≤ e1 | X1 = x1) =
P(ε1 ≤ e1, X1 = x1)

P(X1 = x1)

=
P(ε1 ≤ e1, X1 = x1)∏n

i=2 P(Xi = xi)

P(X1 = x1)∏n
i=2 P(Xi = xi)

=
P(ε1 ≤ e1, X1 = x1, . . . , Xn = xn)

P(X1 = x1, . . . , Xn = xn)
= P(ε1 ≤ e1 |X = x)

for all e1 ∈ R. This holds true for each other residual and so we have

P(ε i ≤ ei |X = x) = P(ε i ≤ ei | Xi = xi)

for all ei ∈ R and i = 1, . . . , n. Thus, it follows that

P(ε ≤ e |X = x) =
P(ε1 ≤ e1, . . . , εn ≤ en, X1 = x1, . . . , Xn = xn)

P(X1 = x1, . . . , Xn = xn)

=
∏n

i=1 P(ε i ≤ ei, Xi = xi)

∏n
i=1 P(Xi = xi)

=
n

∏
i=1

P(ε i ≤ ei | Xi = xi)

=
n

∏
i=1

P(ε i ≤ ei |X = x)

for all e = (e1, . . . , en) ∈ Rn.
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