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Abstract
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among a set of alternatives is presented. It compares the Sharpe ratio of the benchmark with that of
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confirms a general observation in empirical finance.

Keywords: Ergodicity, Gordin’s condition, heteroscedasticity, intersection-union test, Jobson-
Korkie test, performance measurement, Sharpe ratio.

JEL Subject Classification: C12, G11.

∗Phone: +49 40 6541-2791, e-mail: frahm@hsu-hh.de.



Frahm, 2018 • An Intersection-Union Test for the Sharpe Ratio

1. Motivation

THIS work builds upon Frahm et al. (2012), in which the authors argue why joint and
multiple testing procedures should be applied in order to judge whether or not some
investment strategy is optimal among a set of several alternatives. Frahm et al. (2012) can

be understood as a complement to DeMiguel et al. (2009), who doubt that portfolio optimization
on the basis of time-series information is worthwhile at all. Indeed, modern portfolio theory
suffers from a serious drawback, namely that portfolio weights are very sensitive to estimation
risk. It is well-known that portfolio optimization fails on estimating expected asset returns.

DeMiguel et al. (2009) show that well-established investment strategies are not significantly
better than the naive strategy, i.e., the equally weighted portfolio. Of course, this does not
mean that naive diversification is optimal, but we usually have not enough observations in
order to prove the opposite. They highlight a general problem of empirical finance, namely that
hypothesis testing is difficult due to the lack of data. This is all the more true if there is more than
one (single) null hypothesis. The results reported by DeMiguel et al. (2009) are convincing, but
their statistical methodology does not take the undesirable effects of joint and multiple testing
into account. By contrast, the test presented in this work is designed to address those problems.

The literature provides a wide range of different investment strategies (see, e.g., Bartosz,
2012, Burgess, 2000, Conrad and Kaul, 1998, DeMiguel et al., 2009, Menkhoff et al., 2012, Shen
et al., 2007, Szakmary et al., 2010, Vrugt et al., 2004, Zagrodny, 2003) and we are typically
concerned with the question of whether a given investment strategy is optimal among a set of
alternatives.1 In order to validate our hypothesis, we usually compare the performance of our
benchmark, e.g., its certainty equivalent or Sharpe ratio, with the performance of each other
strategy that is taken into consideration. Let d > 1 be the number of investment strategies
and i ∈

{
1, 2, . . . , d

}
be our benchmark. We may suppose that i = 1 without loss of generality.

Further, let η = (η1, η2, . . . , ηd) ∈ Rd be a (column) vector of performance measures. Now, first
of all, consider the hypotheses

H0∧ : η1 ≥ η vs. H1∧ : η1 6≥ η.

That is, H0∧ states that our benchmark is optimal. After performing a (joint) hypothesis test, we
could reject the null hypothesis H0∧ in favor of the alternative hypothesis H1∧. In this case, we
could say that there exists some strategy that is better than our benchmark, but not which one.2 By
contrast, if we are not able to reject H0∧ we must not conclude that our benchmark is optimal. A
well-known method for testing the intersection of a number of single null hypotheses is studied
by Roy (1953), which is called union-intersection test (Sen and Silvapulle, 2002). However,
union-intersection tests are not the object of this work.

1A different question is whether some asset universe allows the investor to achieve a higher performance compared to
another asset universe (Hanke and Penev, 2018).

2In order to identify the outperforming strategies we would have to apply a multiple test. For more details on that
topic see, e.g., Frahm et al. (2012) as well as Romano and Wolf (2005).
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By contrast, here I consider the following hypotheses:

H0∨ : η1 6≥ η vs. H1∨ : η1 ≥ η.

Now, the joint null hypothesis H0∨ asserts that our benchmark is not optimal. If we are able
to reject H0∨, our benchmark turns out to be (significantly) optimal among all alternatives. By
contrast, in the case in which we cannot reject the null hypothesis we must not conclude that
our benchmark is outperformed by any other strategy. Applying a test for H0∨ might be the
primary goal both in theoretical and in practical applications of portfolio theory.

The former test can be rewritten, equivalently, as

H0∧ :
d∧

i=2

η1 ≥ ηi vs. H1∧ :
d∨

i=2

η1 < ηi,

whereas the latter test reads

H0∨ :
d∨

i=2

η1 < ηi vs. H1∨ :
d∧

i=2

η1 ≥ ηi.

This explains the chosen symbols for the null and the alternative hypothesis. However, in the
following I focus on the latter test and write only “H0” and “H1” for notational convenience.

The test proposed in this work is very simple: The null hypothesis is rejected if and only if we
can reject each single hypothesis H0i : η1 < ηi in favor of H1i : η1 ≥ ηi. Let Ai be the event that
H0i is rejected. The probability that all single null hypotheses are rejected amounts to

P

(
d⋂

i=2

Ai

)
≤

d∧
i=2

P(Ai).

If H0i is true for some i ∈
{

2, 3, . . . , d
}

we must have that P(Ai) ≤ αi, where αi ∈ (0, 1) denotes
the significance level of the (single) hypothesis test for H0i. Under H0 at least one single null
hypothesis must be true and thus we have that

d∧
i=2

P(Ai) ≤
d∨

i=2

αi .

Hence, the proposed test for H0 has level α ∈ (0, 1) if α2, α3, . . . , αd ≤ α. The least conservative
choice is α2 = α3 = . . . = αd = α, in which case H0 is rejected if and only if the largest p-value of
all single tests falls below α. Throughout this work, I assume that each single test has level α.

At first glance, this testing procedure might seem to suffer from a lack of power because it
does not take the dependence structure of the single test statistics into account. Nonetheless,
it is a likelihood-ratio test that is commonly referred to as an intersection-union test (Berger,
1997). Thus, it inherits the general asymptotic optimality properties of likelihood-ratio tests that
are known from likelihood theory (see, e.g., van der Vaart, 1998, Chapter 15 and 16). Another
striking feature might be the fact that the overall test has the same significance level as each
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single test. This is because H0 is rejected only if all single tests lead to a rejection and so we need
no Bonferroni correction in order to preserve the significance level of each single test. For more
details on that topic see Berger (1997) as well as Sen and Silvapulle (2002).

In this work, I present an intersection-union test in order to decide whether a given investment
strategy is optimal among a set of alternative strategies. This is done with respect to the Sharpe
ratio. Joint and multiple tests for the Sharpe ratio are applied also in Frahm et al. (2012) by using
a stationary block-bootstrap procedure. By contrast, here I provide analytical results. I refrain
from assuming that asset returns are serially independent and multivariate normally distributed.
Each single test represents a (nonparametric) generalization of the Jobson-Korkie test (Jobson
and Korkie, 1981, Memmel, 2003). Finally, I apply the intersection-union test to historical data.

The same problem is addressed by Ledoit and Wolf (2008) as well as Schmid and Schmidt
(2009) in a bivariate setting. However, the intersection-union test presented here is motivated by
a multivariate point of view, i.e., d > 2, and its primary goal is to avoid any kind of selection bias
that can occur when testing a joint hypothesis. Thus, it cannot be said that the intersection-union
test is “better” or “worse” than the tests proposed by Ledoit and Wolf (2008). It is hardly possible
to provide any general answer to this question at all (Ledoit and Wolf, 2008, Section 4 and 5).
Instead, I try to fill a gap between Frahm et al. (2012) as well as Ledoit and Wolf (2008):

(i) I derive closed-form expressions for the standard errors of the test statistics, instead of
providing numerical results that have been obtained by bootstrapping, and

(ii) I do this for the case d ≥ 2 but not (only) for d = 2.

2. The Intersection-Union Test

2.1. Gordin’s Condition

In the following, “Xn → X” denotes almost sure convergence, whereas “Xn  X” stands for
convergence in distribution. Let Pt > 0 be the price of some asset or, more generally, the value
of some strategy at time t ∈ Z. Throughout this work, the terms “asset” and “strategy” as well
as “price” and “value” are used synonymously. The asset return after Period t is defined as
Rt := Pt/Pt−1 − 1.3 I assume that the return process {Rt} is (strongly) stationary with expected
return µ := E(Rt) and variance σ2 := Var(Rt) < ∞. The process

{
Rt
}

shall also be ergodic.
This means that 1

n ∑n
t=1 f (Rt)→ E

(
f (R)

)
for each integrable function f of R, where the random

variable R has the same distribution as each component of {Rt}. This guarantees that every
finite moment of R can be consistently estimated by the corresponding moment estimator. The
return process is ergodic if it is mixing (Bradley, 2005). More precisely, for all k, l = 1, 2, . . . , the
random vector (Rt, Rt+1, . . . , Rt+k) is asymptotically independent of (Rt−n, Rt−n+1, . . . , Rt−n+l)

as n→ ∞ (Hayashi, 2000, p. 101).
The ergodicity of

{
Rt
}

implies that µn → µ, where µn := 1
n ∑n

t=1 Rt is the sample mean of
R1, R2, . . . , Rn. Put another way, the return process satisfies the Strong Law of Large Numbers.
In order to preserve the Central Limit Theorem (CLT), i.e.,

√
n (µn − µ) N

(
0, σ2

L
)
, we need

3Any capital income that occurs during Period t is considered part of Pt.
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an additional requirement. This is known as Gordin’s condition (Hayashi, 2000, p. 402). Let
Ht := (Rt, Rt−1, . . .) be the history of {Rt} at time t ∈ Z. It is assumed that E(Rt | Ht−n)

converges in mean square to µ as n→ ∞ and, according to Hayashi (2000, p. 403), we must have
that

∞

∑
k=0

√
E(ε2

k) < ∞

with εk := E(Rt | Ht−k)− E(Rt | Ht−k−1) for k = 0, 1, . . . . It can be shown that σ2
L = ∑∞

k=−∞ Γ(k),
where Γ is the autocovariance function of {Rt} (Hayashi, 2000, Proposition 6.10). The number σ2

L

is referred to as the large-sample variance of {Rt}, whereas σ2 represents its stationary variance.
In the following, I assume that τ2 := Var

(
(Rt− µ)2) < ∞ and that Gordin’s condition is satisfied

not only for {Rt} but also for {(Rt − µ)2}.
The aforementioned requirements can easily be extended to any d-dimensional return process

(Hayashi, 2000, p. 405) and applied to a broad class of standard time-series models. There exist
a number of alternative criteria for the CLT, which can be found, e.g., in Brockwell and Davis
(1991, p. 213) as well as Hamilton (1994, p. 195). However, to the best of my knowledge, Gordin’s
condition represents the most unrestrictive set of assumptions about the serial dependence
structure of a stochastic process (Eagleson, 1975). In particular, it can be considered a natural
generalization of the CLT for martingale difference sequences (Hayashi, 2000, p. 106).

It is worth emphasizing that the number of dimensions, d, is supposed to be fixed. At least,
we have to assume that n, d→ ∞ such that n/d→ ∞. If n/d tends to a finite number, the CLT
might become invalid and other interesting issues that are well-known from random matrix
theory can arise (Frahm and Jaekel, 2015). By contrast, if the number of observations relative to
the number of strategies is sufficiently large, we may expect that the CLT is satisfied under the
aforementioned conditions.

I suppose, without loss of generality, that the risk-free interest rate is constantly zero. That
is, I implicitly refer to asset returns in excess of the risk-free interest rate that can be observed
at the beginning of each period. The Sharpe ratio η := µ/σ (Sharpe, 1966) is frequently used
as a performance measure both in theory and in practice. In the following section, I present
the intersection-union test, which can be applied in order to judge whether a given investment
strategy possesses the largest Sharpe ratio among a set of alternatives. This can be done under
the quite general assumptions about the return process {Rt}mentioned above.

2.2. Asymptotic Properties of Sharpe Ratios

In this section, I present some asymptotic properties of Sharpe ratios. The reader can find the
derivations in the appendix. It holds that

σ2
n :=

1
n

n

∑
t=1

(Rt − µn)
2 =

1
n

n

∑
t=1

(Rt − µ)2 − (µn − µ)︸ ︷︷ ︸
→ 0

2 → σ2
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and

√
n
(
σ2

n − σ2) = √n

{
1
n

n

∑
t=1

[
(Rt − µ)2 − σ2

]}
−
√

n (µn − µ)︸ ︷︷ ︸
 N (0,σ2

L)

(µn − µ)︸ ︷︷ ︸
→ 0

 N
(
0, τ2

L
)
.

This means that σ2
n is a consistent estimator for the stationary variance σ2 and

√
n
(
σ2

n − σ2) is
asymptotically normally distributed with large-sample variance τ2

L.
For assessing the large-sample variance of

{
Rt
}

, i.e., σ2
L = ∑∞

k=−∞ Γ(k), we need to estimate the
autocovariance function Γ. There are many ways to achieve this goal. Usually, one applies either
heteroscedasticity-autocorrelation consistent (HAC) inference or some bootstrap procedure
(Andrews, 1991, Ledoit and Wolf, 2008, Politis, 2003). A nice comparison between HAC inference
and bootstrapping in the context of performance measurement can be found in Ledoit and Wolf
(2008). Bootstrapping is a very powerful tool, but it can be computationally more intensive than
HAC inference. Moreover, sometimes it is not clear whether or not the necessary (mathematical)
conditions for the bootstrap are satisfied. The method proposed here, in some sense, bypasses
the aforementioned problems. However, also HAC estimation can be somewhat obscure when it
comes to choosing the right kernel and bandwidth, etc. For this reason, I keep things as simple
as possible, i.e., I choose the box-kernel-type HAC-estimator

σ2
Ln := Γn(0) + 2

l

∑
k=1

Γn(k),

where Γn is the empirical autocovariance function of {Rt} with l � n (Hayashi, 2000, p. 142),
i.e.,

k 7→ Γn(k) :=
1
n

n

∑
t=k+1

(
Rt − µn

)(
Rt−k − µn

)
.

It is a stylized fact of empirical finance that Γn(k) ≈ Γ(k) ≈ 0 for all k 6= 0, i.e., asset returns are
not significantly autocorrelated, and so we may expect that σ2

Ln ≈ σ2
n .

The large-sample variance of
{
(Rt − µ)2} is τ2

L, which can be estimated by

τ2
Ln := Πn(0) + 2

l

∑
k=1

Πn(k),

where Πn is the empirical autocovariance function of
{
(Rt − µn)2}, i.e.,

k 7→ Πn(k) :=
1
n

n

∑
t=k+1

(
(Rt − µn)

2 − σ2
n

)(
(Rt−k − µn)

2 − σ2
n

)
.

Typically, asset returns are conditionally heteroscedastic. This means that, in contrast to σ2
L vs.

σ2, the large-sample variance τ2
L can be significantly larger than the stationary variance τ2.

6
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Gordin’s condition guarantees that

√
n

([
µn − µ

σ2
n − σ2

])
 N

(
0,

[
σ2

L κL

κL τ2
L

])
,

where κL represents the large-sample covariance between R and (R− µ)2. Due to the so-called
“leverage effect” (Black, 1976), we can expect that κL is negative. Moreover, we already know
that
√

n (µn − µ) N
(
0, σ2

L
)

and, by applying the delta method, we obtain

√
n (σn − σ) N

(
0,

τ2
L

4σ2

)
,

which can be used in order to calculate the standard error of σn.
The Sharpe ratio is estimated by ηn := µn/σn and the delta method leads to

√
n
(
ηn − η

)
 N

(
0,

σ2
L

σ2 −
ηκL

σ3 +
η2τ2

L
4σ4

)
.

Schmid and Schmidt (2009) obtain the same large-sample variance of {ηn} under the assumption
that the processes are strongly mixing (Bradley, 2005), but that assumption seems to be more
restrictive than Gordin’s condition.

To the best of my knowledge, Lo (2002) is the first who analyzes the potential impact of serial
dependence when estimating the Sharpe ratio. Mertens (2002) points out that the formula for
independent and identically distributed asset returns presented by Lo (2002) is implicitly based
on the normal-distribution hypothesis. More precisely, he shows that the large-sample variance
of {ηn} is

1 +
η2

2
− γ3η +

γ4 − 3
4
· η2

if the components of {Rt} are independent and identically distributed, where

γ3 :=
E
(
(Rt − µ)3)

σ3 and γ4 :=
E
(
(Rt − µ)4)

σ4

denote the skewness and the kurtosis of Rt, respectively. Lo (2002) implicitly presumes that
γ3 = 0 and γ4 = 3, in which case the large-sample variance of {ηn} is 1 + η2/2. Some of those
results can be found also in Opdyke (2007). However, Ledoit and Wolf (2008) mention that the
formula for serially dependent asset returns presented by Opdyke (2007) is wrong because it
does not distinguish between large-sample and stationary (co-)variances. One purpose of this
work is to clarify the aforementioned misunderstandings.

Suppose, without loss of generality, that we want to compare the Sharpe ratio of Strategy 1
with that of Strategy 2. The reader can verify in the appendix that

√
n

([
η1n − η1

η2n − η2

])
 N

(
0,

[
ω11 ω12

ω21 ω22

])

7
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with

ω11 =
σ2

L1

σ2
1
− η1κL1

σ3
1

+
η2

1τ2
L1

4σ4
1

, ω22 =
σ2

L2

σ2
2
− η2κL2

σ3
2

+
η2

2τ2
L2

4σ4
2

,

and
ω12 = ω21 =

λ11

σ1σ2
− η2σ1λ12 + η1σ2λ21

2σ2
1 σ2

2
+

η1η2λ22

4σ2
1 σ2

2
,

where [
λ11 λ12

λ21 λ22

]
is the large-sample covariance matrix of

(
R1t, (R1t − µ1)

2) and
(

R2t, (R2t − µ2)2).
We conclude that √

n
(
∆ηn − ∆η

)
 N

(
0, ω11 + ω22 − 2ω12

)
with ∆ηn := η1n − η2n and ∆η := η1 − η2. It is worth emphasizing that the benchmark must be
chosen before examining the Sharpe ratios. Otherwise, the entire procedure would suffer from
a selection bias and then the results derived so far are no longer valid. However, this is not a
serious drawback. If our choice of the benchmark is based on historical data we can simply
apply the test out of sample.

As already mentioned at the end of Section 1, the given result represents a nonparametric
generalization of the Jobson-Korkie test (Jobson and Korkie, 1981), which is frequently used in
finance. The latter is based on the assumption that asset returns are serially independent and
multivariate normally distributed. In this special case, it follows that

√
n
(
∆ηn − ∆η

)
 N

(
0, 2 (1− ρ12) +

η2
1 + η2

2 − 2η1η2ρ2
12

2

)
,

where ρ12 := σ12/(σ1σ2) is the linear correlation coefficient between the return on Strategy 1
and the return on Strategy 2. This expression for the large-sample variance of {∆ηn} corrects a
typographical error made by Jobson and Korkie (1981) (Memmel, 2003).

2.3. Empirical Study

In order to demonstrate the intersection-union test, I consider monthly excess returns on the
MSCI stock indices for the G–7 countries, i.e., Canada, France, Germany, Italy, Japan, UK and
USA, from January 1970 to January 2018. The given indices are calculated on the basis of USD
stock prices that are adjusted for dividends, splits, etc.4 The sample size corresponds to n = 577
and the risk-free interest rate is calculated on the basis of the secondary market 3-month US
treasury bill rate at the beginning of each period.5 I choose the equally weighted portfolio (EWP)
of all G–7 countries as a benchmark. This choice can be justified by the argument that investors
should make use of international diversification (Jorion, 1985).

For estimating the large-sample variances, I choose the lag length l = 12. First of all, I show
that Γn(k) ≈ 0 for all k ∈

{
1, 2, . . . , l

}
. For this purpose, I focus on the empirical autocorrelation

4The total returns have been retrieved from the MSCI webpage (https://www.msci.com/end-of-day-data-country).
5The data have been obtained from the Federal Reserve Bank of St. Louis (https://fred.stlouisfed.org/series/TB3MS).
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function, i.e., k 7→ ρn(k) := Γn(k)/Γn(0). Figure 1 contains the correlograms with respect to
{Rt} for the EWP and each G–7 country, where the red lines indicate the critical thresholds for
the null hypothesis that the (true) autocorrelation at k is zero on the significance level α = 0.05.
Further, the reader can find the Ljung-Box Q-statistic in each plot, whose critical threshold
on the significance level α = 0.05 amounts to 21.0261. The given results confirm the general
opinion that first-order autocorrelations of asset returns do not significantly differ from zero.6

Put another way, the large-sample variances and covariances of asset returns are not significantly
larger than their stationary counterparts. This picture changes substantially in Figure 2, which
shows the empirical autocorrelations with respect to

{
(Rt − µn)2}. Now, the Ljung-Box test

always leads to a rejection of the null hypothesis H0 : ρ(1) = ρ(2) = . . . = ρ(12) = 0. That is,
there is a strong evidence that monthly asset returns exhibit conditional heteroscedasticity.

The following table contains the estimated large-sample variances divided by their stationary
counterparts both for {Rt} and for

{
(Rt − µn)2}:

EWP Canada France Germany Italy Japan UK USA

σ2
Ln/σ2

n 1.4987 1.0299 1.2036 1.1255 1.6913 2.1828 1.2720 1.0118

τ2
Ln/τ2

n 2.5962 2.7550 2.3081 2.9514 2.3707 2.8368 2.5027 2.6202

We can see that the estimates of the large-sample variance of {Rt} do not differ very much
from the stationary ones—except for Japan, where the large-sample variance seems to be more
than twice the stationary variance. By contrast, the estimates of the large-sample variance of{
(Rt− µn)2} are always more than twice their stationary counterparts. Hence, it is inappropriate

to ignore the serial dependence structure of monthly asset returns.
Table 1 contains the means, standard deviations, and Sharpe ratios for the EWP and the G–7

countries based on the monthly asset returns from January 1970 to January 2018. The standard
errors are given in parentheses. Despite the large number of observations, the standard errors
of µn and ηn are big compared to the corresponding estimates. This is a common problem in
financial econometrics or, more specifically, in performance measurement. The last row of Table
1 contains the standard errors of the Sharpe ratios under the Jobson-Korkie assumption, i.e., that
asset returns are serially independent and multivariate normally distributed. These numbers
are smaller than their nonparametric counterparts and they do not vary too much. Under the
Jobson-Korkie assumption, the large-sample variance of {ηn} amounts to 1 + η2/2 ≈ 1. Hence,
the standard error of ηn is approximately 1/

√
n , which explains why the standard errors are

almost constant in the last row of Table 1.
Now, in principle, we would like to support the (alternative) hypothesis that the EWP is

optimal compared to each G–7 country. Unfortunately, Table 1 shows that UK has the largest
Sharpe ratio and so the EWP cannot be significantly better. Interestingly, this was not always the
case. A closer inspection of the data reveals that the EWP had the largest Sharpe ratio before
the financial crisis 2007–2008. However, now we have to stop our testing procedure, but for
informational purposes I provide the Sharpe-ratio differences for each 7 pairs, the corresponding

6The only exception is Japan, where we can find a relatively large Q-statistic of 31.7637.
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EWP Canada France Germany Italy Japan UK USA

µn 0.0053 0.0052 0.0062 0.0060 0.0033 0.0054 0.0052 0.0057
SE(µn) 0.0023 0.0024 0.0029 0.0028 0.0040 0.0037 0.0020 0.0026

σn 0.0461 0.0560 0.0640 0.0627 0.0732 0.0599 0.0436 0.0620
SE(σn) 0.0030 0.0040 0.0037 0.0041 0.0038 0.0035 0.0028 0.0077

ηn 0.1149 0.0923 0.0971 0.0961 0.0449 0.0898 0.1202 0.0927
SE(ηn) 0.0581 0.0462 0.0492 0.0479 0.0537 0.0624 0.0548 0.0508
SEJK(ηn) 0.0419 0.0417 0.0417 0.0417 0.0417 0.0417 0.0418 0.0417

Table 1: Means, standard deviations, and Sharpe ratios for the EWP and the G–7 countries. The
standard errors are given in parentheses.

Canada France Germany Italy Japan UK USA

∆ηn 0.0226 0.0178 0.0187 0.0700 0.0251 -0.0053 0.0222

SE(∆ηn) 0.0213 0.0317 0.0419 0.0269 0.0374 0.0381 0.0376
t 1.0635 0.5598 0.4472 2.6054 0.6718 -0.1397 0.5891

SEJK(∆µn) 0.0291 0.0227 0.0257 0.0299 0.0354 0.0290 0.0274
tJK 0.7758 0.7821 0.7298 2.3420 0.7083 -0.1833 0.8089

Table 2: Sharpe ratio differences, standard errors, and t-statistics.

standard errors, and the associated t-statistics in Table 2. The reader can verify that it would
have been hard to reject H0, anyway. The problem is that every t-statistic must be greater than
Φ−1(1− α) = 1.6449 in order to reject H0, but this stringent condition is fulfilled only for Italy.

The lower part of Table 2 contains the standard errors of the Sharpe ratio differences and
the t-statistics that are calculated under the Jobson-Korkie assumption. Although the standard
errors of ηn that are obtained under the same distributional assumption are always lower than
their nonparametric counterparts (see the last row of Table 1), the same effect cannot be observed
regarding ∆ηn. The Jobson-Korkie assumption underestimates the standard errors for some
indices, but it overestimates them for other indices. All in all it appears to be very difficult to
compare investment strategies by historical observation because the given results are hardly
ever significant if we apply a joint or a multiple hypothesis test (Frahm et al., 2012).

3. Conclusion

In portfolio optimization we are often concerned with the question of whether a given investment
strategy is optimal among a set of alternatives. In this work, I presented an intersection-union
test for the null hypothesis that the benchmark is suboptimal in terms of the Sharpe ratio. The
proposed test can easily be implemented. Further, it accounts for serial dependence and it does
not presume that asset returns are multivariate normally distributed. Thus, it is compatible with
the stylized facts of empirical finance. However, an empirical study demonstrates that, in most
practical applications, it is hard to reject the null hypothesis due to the lack of data.
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A. Asymptotic Results

We can write σ = f (σ2) with f : σ2 7→
√

σ2. The first derivative of f at σ2 is (2σ)−1. Hence, the
asymptotic variance of

√
n (σn − σ) is τ2

L (2σ)−2 = τ2
L/(4σ2).

Further, the Sharpe ratio can be written as η = g(µ, σ2) with g : (µ, σ2) 7→ µ/
√

σ2. We obtain

∂g(µ, σ2)

∂µ
=

1
σ

and
∂g(µ, σ2)

∂σ2 = − µ

2σ3 .

Hence, the asymptotic variance of
√

n
(
ηn − η

)
reads

σ2
L

σ2 − 2 · µκL

2σ4 +
µ2τ2

L
4σ6 =

σ2
L

σ2 −
ηκL

σ3 +
η2τ2

L
4σ4 .

Further, if the components of {Rt} are independent and identically distributed, we have that
σ2

L = σ2,

κL = Cov
(

Rt, (Rt − µ)2) = E
(

Rt(Rt − µ)2)− µσ2

= E
(
(Rt − µ)3)+ µσ2 − µσ2 = E

(
(Rt − µ)3),

and τ2
L = Var

(
(Rt − µ)2) = E

(
(Rt − µ)4)− σ4, i.e., κL/σ3 = γ3 and τ2

L/σ4 = γ4 − 1. Thus, we
conclude that

σ2
L

σ2 −
ηκL

σ3 +
η2τ2

L
4σ4 = 1 +

η2

2
− γ3η +

γ4 − 3
4
· η2 .

Now, consider the asymptotic covariance matrix of

√
n

([
η1n − η1

η2n − η2

])
.

The above result immediately leads to

ω11 =
σ2

L1

σ2
1
− η1κL1

σ3
1

+
η2

1τ2
L1

4σ4
1

and ω22 =
σ2

L2

σ2
2
− η2κL2

σ3
2

+
η2

2τ2
L2

4σ4
2

.

Moreover, the asymptotic covariance between
√

n
(
η1n − η1

)
and
√

n
(
η2n − η2

)
is

ω12 = ω21 =

∂g(µ1, σ2
1 )/∂µ1

∂g(µ1, σ2
1 )/∂σ2

1

′ λ11 λ12

λ21 λ22

∂g(µ2, σ2
2 )/∂µ2

∂g(µ2, σ2
2 )/∂σ2

2


=

λ11

σ1σ2
− µ2λ12

2σ1σ3
2
− µ1λ21

2σ3
1 σ2

+
µ1µ2λ22

4σ3
1 σ3

2
=

λ11

σ1σ2
− η2σ1λ12 + η1σ2λ21

2σ2
1 σ2

2
+

η1η2λ22

4σ2
1 σ2

2
.

If the asset returns are serially independent, the large-sample (co-)variances coincide with
their stationary counterparts. More precisely, it holds that σ2

L1 = σ2
1 , σ2

L2 = σ2
2 , and λ11 = σ12.

Moreover, by using some standard results for the multivariate normal distribution (Muirhead,
1982, p. 43), we obtain κL1 = κL2 = 0, τ2

L1 = 2σ4
1 , τ2

L2 = 2σ4
2 , λ12 = λ21 = 0, and λ22 = 2σ2

12. Thus,
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we have that

ω11 =
σ2

1

σ2
1
+

η2
12σ4

1

4σ4
1

= 1 +
η2

1
2

and ω22 =
σ2

2

σ2
2
+

η2
22σ4

2

4σ4
2

= 1 +
η2

2
2

as well as

ω12 =
σ12

σ1σ2
+

η1η22σ2
12

4σ2
1 σ2

2
= ρ12 +

η1η2ρ2
12

2
.

This leads to the large-sample variance of ∆ηn, i.e.,

ω11 + ω22 − 2ω12 = 2 (1− ρ12) +
η2

1 + η2
2 − 2η1η2ρ2

12
2

.
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B. Correlograms

Figure 1: Correlograms with respect to {Rt} of the EWP and each G–7 country.
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Figure 2: Correlograms with respect to
{
(Rt − µn)2} of the EWP and each G–7 country.
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