Publications – Latest Activities

Selected Publications

in 2024

  • J. S. Stokke, M. Bause, N. Margenberg, F. A. Radu, The Biot-Allard poro-elasticity system: equivalent forms and well-posedness, Appl. Math. Lett., in press (2024), 6 pages; doi: 10.1016/j.aml.2024.109224.
  • N. Margenberg, R. Jendersie, C. Lessig, T. Richter, DNN-MG: A hybrid neural network/finite element method with applications to 3D simulations of the Navier–Stokes equations, 2024, Comput. Methods Appl. Mech. Engrg. 420, 116692. https://doi.org/10.1016/j.cma.2023.116692.
  • M. Anselmann, M. Bause, N. Margenberg, P. Shamko, An energy-ecient GMRES-Multigrid solver for space-time nite element computation of dynamic poroelasticity, Comput. Mech., in press (2024), 24 pages; doi: 10.1007/s00466-024-02460-w.
  • M. Bause, M. Anselmann, U. Köcher, F. A. Radu, Convergence of a continuous Galerkin method for hyperbolic-parabolic systems, Comput. Math. with Appl., 158 (2024), pp. 118-138; doi: 10.1016/j.camwa.2024.01.014.
  • O. Mamun, M. Bause, B. S. M. Ebna Hai, Accelerated Development of Multicomponent Alloys in Discrete Design Space Using Bayesian Multi-Objective Optimisation, Npj Comput. Mater., submitted (2024), pp. 1-38, arXiv:2401.06106.
  • N. Margenberg, F. X. Kärtner, M. Bause, Optimal Dirichlet Boundary Control by Fourier Neural Operators Applied to Nonlinear Optics, J. Comput. Phys., 499 (2024), 112725, 28 pages, doi: https://doi.org/10.1016/j.jcp.2023.112725; arXiv:2307.07292.

in 2023

  • M. Bause, M. Anselmann, Optimal order FEM for dynamic poroelasticity: Error analysis for equal order elements, in A. Sequeira et al. (eds.), Numerical Mathematics and Advanced Applications ENUMATH 2023, Lect. Notes Comput. Sci. Eng., submitted, 8 pages.
  • N. Margenberg, M. Anselmann, M. Bause, R. Jendersie, C. Lessig, T. Richter, Benchmark of hybrid nite element/deep neural network methods, in A. Sequeira et al. (eds.), Numerical Mathematics and Advanced Applications ENUMATH 2023, Lect. Notes Comput. Sci. Eng., submitted, 8 pages.
  • M. Bause, S. Franz, Structure preserving discontinuous Galerkin approximation of a hyperbolic-parabolic system, Electron. Trans. Numer. Anal., submitted (2023), pp. 1-24; arXiv:2311.01264.
  • M. Anselmann, M. Bause, N. Margenberg, P. Shamko, Benchmark computations of dynamic poroelasticity, Proc. Appl. Math. Mech., 23 (2023), e202300096, 8 pages; doi: 10.1002/pamm.202300096.
  • M. Anselmann, M. Bause, A geometric multigrid method for space-time finite element discretizations of the Navier-Stokes equations and its application to 3d flow simulation, ACM Trans. Math. Softw., 49 (2023), Article No.: 5, pp. 1-25, https://doi.org/10.1145/3582492; arXiv:2107.10561.
  • M. P. Bruchhäuser, M. Bause, A cost-efficient space-time adaptive algorithm for coupled  flow and transport, J. Comput. Methods Appl. Math., accepted (2023), pp. 1-31, https://doi.org/10.1515/cmam-2022-0245; arXiv:2212.02954.
  • N. Margenberg, Franz X. Kärtner, M. Bause, Accurate simulation of THz generation with Finite-Element Time Domain methods, Opt. Express, accepted (2023), pp. 1-23, https://doi.org/10.1364/OE.480793; arXiv:2211.06854.

in 2022

  • M. P. Bruchhäuser, U. Köcher, M. Bause, On the implementation of an adaptive multirate framework for coupled transport and flow, J. Sci. Comput. 93:59 (2022), 29 pages; https://doi.org/10.1007/s10915-022-02026-z.
  • M. Anselmann, M. Bause, CutFEM and ghost stabilization techniques for higher order space-time discretizations of the Navier-Stokes equations, Int. J. Numer. Meth. Fluids,  94 (2022), pp. 775-802, doi: 10.1002/fld.5074.
  • N. Margenberg, D. Hartmann, C. Lessig, T. Richter, A neural network multigrid solver for the Navier-Stokes equations, J. Comput. Phys., 2022, https://doi.org/10.1016/j.jcp.2022.110983.
  • N. Margenberg, C. Lessig, T. Richter, Structure preservation for the Deep Neural Network Multigrid Solver, Electron. Trans. Numer. Anal., 2022, https://doi.org/10.1553/etna_vol56s86.
  • M. Bause, M. Lymbery, K. Osthues, C1-conforming variational discretization of the bi-harmonic wave equation, Comput. Math. with Appl., 119 (2022), pp. 208-219.

in 2021

  • M. Anselmann, M. Bause, Numerical convergence of discrete extensions in a space-time finite element, fictitious domain method for the Navier–Stokes equations, PAMM Proc. Appl. Math. Mech. 2021;21:1 e202100011.
  • D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassmöller, T. Heister, L. Heltai, U. Köcher, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, S. Proell, K. Simon, B. Turcksin, D. Wells, J. Zhang, The deal.II Library, Version 9.3, J. Numer. Math. 29(3): 171-186 (JNUM), 2021 [ preprint ]; doi:10.1515/jnma-2021-0081.
  • M. Anselmann, M. Bause, A geometric multigrid method for space-time finite element discretizations of the Navier–Stokes equations and its application to 3d flow simulation, Transactions on Mathematical Software, submitted (2021), pp. 1–27; arXiv:2107.10561.
  • M. Anselmann, M. Bause, Numerical convergence of discrete extensions in a space-time finite element, fictitious domain method for the Navier-Stokes equations, PAMM Proc. Appl. Math. Mech., 21 (2021), e202100011, doi:10.1002/pamm.202100011.
  • M. Bause, M. P. Bruchhäuser, U. Köcher, Flexible goal-oriented adaptivity for higher-order space-time discretizations of transport problems with coupled flow, Comput. Math. with Appl., 91 (2021), pp. 17-35.

in 2020

  • M. Anselmann, M. Bause, S. Becher, G. Matthies, Galerkin-collocation approximation in time for the wave equation and its post-processing, ESAIM Math. Model. Numer. Anal., 54 (2020), p. 2099-2123; arXiv:1908.08238.

in 2019

  • Ebna Hai, B.S.M., Bause, M. Finite Element Modelling of Ultrasonic Guided Waves Propagation in the Fluid-Composite Structure Interaction. Keynote Lecture in Coupled Problems/ Multi-field problems in porous media mechanics. In proceedings of: the 8th GACM Colloquium on Computational Mechanics, ISBN: 978-3-7376-5093-9, pp 319–322, 2019. doi:10.19211/KUP9783737650939.
  • Ebna Hai, B.S.M., and Bause, M. Modelling and Simulation of Ultrasonic Guided Waves Propagation in the Fluid-Composite Structure Interaction. In proceedings of: the 12th International Workshop on Structural Health Monitoring, Sept 10-12, 2019, Stanford University, CA, USA. In: F-K. Chang and F. Kopsaftopoulos (Ed.), “Structural Health Monitoring 2019: Enabling Intelligent Life-cycle Health Management for Industry Internet of Things (IIOT)“. Vol. 2, pp 1963–1970, ISBN: 978-1-60595-601-5, DEStech Publications Inc., USA. 2019. doi:10.12783/shm2019/32328.
  • B. S. M. Ebna Hai, M. Bause, Numerical study and comparison of alternative time discretization schemes for an ultrasonic guided wave propagation problem coupled with fluidstructure interaction, Comput. Math. Appl., 78 (2019), pp. 2867-2885.
  • M. Bause, J. W. Both, F. A. Radu, Iterative Coupling for Fully Dynamic Poroelasticity, in F. Vermolen et al. (eds.), Numerical Mathematics and Advanced Applications: Proceedings of ENUMATH 2019, Lect. Notes Comput. Sci. Eng. 139, Springer, Cham, 2021, pp. 115-124.
  • M. Anselmann, M. Bause, Higher order Galerkin-collocation time discretization with Nitsche’s method for the Navier-Stokes equations,  Math. Comp. Simul. (submitted), pp. 1-22; arXiv:1912.07426.
  • Ebna Hai, B. S. M., Bause, M. Numerical study and comparison of alternative time discretization schemes for an ultrasonic guided wave propagation problem coupled with fluid–structure interaction. Computers & Mathematics with Applications, Vol. 78(9), pp 2867-2885, 2019. doi:10.1016/j.camwa.2019.01.009.
  • B. S. M. Ebna Hai, M. Bause, P. A. Kuberry, Modeling concept and numerical simulation of ultrasonic wave propagation in a moving fluid-structure domain based on a monolithic approach, Appl. Math. Model., 75 (2019), pp. 916-939.
  • U. Köcher, M. P. Bruchhäuser, M. Bause, Efficient and scalable data structures and algorithms for goal-oriented adaptivity of space-time FEM codes, SoftwareX, 10 (2019), 1-6, 100239, open access, open source, 2019, arXiv:1812.08558; code on github:dtm-project/dwr-diffusion; doi:10.1016/j.softx.2019.100239.
  • M. Bause, M. Anselmann, Comparative study of continuously differentiable Galerkin time discretizations for the wave equation, Proceedings in Applied Mathematics & Mechanics, 19 (2019), e201900144, DOI: 10.1002/pamm.201900144.
  • M. Anselmann, M. Bause, Numerical study of Galerkin-collocation approximation in time for the wave equation, in W. Dörfler et al. (eds.), Mathematics of Wave Phenomena, Trends in Mathematics, Birkhäuser, in press, 2019, pp. 1-21; arXiv:1905.00606.
  • M. Bause, U. Köcher, F. A. Radu, F. Schieweck, Post-processed Galerkin approximation of improved order for wave equations, Math. Comp., 88 (2019), in press (2019), pp. 1–34; DOI: 10.1090/mcom/3464.
  • B. S. M. Ebna Hai, M. Bause, P. A. Kuberry, Modeling and simulation of ultrasonic guided waves propagation in the fluid-structure domain by a monolithic approach, J. Fluid Struct., 88 (2019), pp. 100-121.
  • M. P. Bruchhäuser, K. Schwegler, M. Bause, Numerical study of goal- oriented error control for stabilized finite element methods, in Th. Apel et al. (eds.), Advanced Finite Element Methods with Applications: Selected Papers from the 30th Chemnitz Finite Element Symposium 2017, Lecture Notes in Comput. Sci. Eng., vol. 128, Springer, Cham, pp. 85-106 (2019); DOI: 10.1007/978-3-030-14244-5_5.
  • M. Bause, Iterative coupling of mixed and discontinuous Galerkin methods for poroelasticity, in F. Radu et al. (Hrsg.),  Numerical Mathematics and Advanced Applications, Lecture Notes in Comput. Sci. Eng. 126, Springer, Cham, 2019, pp. 551-560.
  • U. Köcher, Influence of the SIPG penalisation on the numerical properties of linear systems for elastic wave propagation, in F. A. Radu et al. (eds.), Numerical Mathematics and Advanced Applications, Lecture Notes in Comput. Sci. Eng. 126, Springer, Cham, 2019, pp. 215-223; arXiv:1712.05594.
  • M. P. Bruchhäuser, K. Schwegler, M. Bause, Dual weighted residual based  error control for nonstationary convection-dominated equations: potential or ballast?, in G. R. Barrenechea, J. Mackenzie (eds.), Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018, Lecture Notes in Comput. Sci. Eng., in press (2019); arXiv: 1812.06810.
  • J. Both, U. Köcher, Numerical investigation on the fixed-stress splitting scheme for Biot’s equations: Optimality of the tuning parameter, in F. A. Radu et al. (eds.), Numerical Mathematics and Advanced Applications, Lecture Notes in Comput. Sci. Eng. 126, Springer, Cham, pp. 789-797; arXiv:1801.08352.

in 2018

  • U. Köcher, M. Bause, A mixed discontinuous-continuous Galerkin times discretisation for Biot’s system, 2018, pp. 1–19; arXiv:1805.00771.

in 2017

  • Ebna Hai, B.S.M. “Finite Element Approximation of Ultrasonic Wave Propagation under Fluid-Structure Interaction for Structural Health Monitoring Systems“. Doctoral dissertation, Department of Mechanical Engineering, Helmut Schmidt University – University of the Federal Armed Forces Hamburg, pp. 1–201, 2017. doi:10.24405/4306.
  • M. Bause, R. Radu, U. Köcher, Space-time finite element approximation of the Biot poroelasticity system with iterative coupling, Comput. Meth. Appl. Mech. Engrg., 320 (2017), pp. 745–768.
  • M. Bause, F. A. Radu, U. Köcher, Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space, Numer. Math. 137 (2017), pp. 773–818.
  • B. S. M. Ebna Hai, Finite Element Approximation of Ultrasonic Wave Propagation under Fluid-Structure Interaction for Structural Health Monitoring Systems, PhD Thesis, Helmut Schmidt University Hamburg, 2017, http://edoc.sub.uni-hamburg.de/hsu/volltexte/2017/3182/.

vor 2017

  • M. Bause, U. Köcher, Iterative coupling of variational space-time methods for Biot’s system of poroelasticity, in B. Karasözen et al. (eds.), Numerical Mathematics and Advanced Applications, Lecture Notes in Comput. Sci. Eng. 112, Springer, Cham, 2016, pp. 143-151.
  • M. Bause, U. Köcher, Variational time discretization for mixed finite element approximations of nonstationary diffusion problems, Journal of Computational and Applied Mathematics, 289 (2015), pp. 208-224.
  • U. Köcher, M. Bause, Variational space-time methods for the wave equation, Journal of Scientific Computing, 61 (2014), pp. 424-453.
  • E. Bänsch, M. Bause, A. Brenner, A-priori error analysis for finite element approximations of Stokes problem on dynamic meshes, IMA J. Numer. Anal., 34 (2014), pp. 123-146.
  • M. Bause, S. Schwegler, Higher order finite element approximation of multicomponent reactive transport with small diffusion, J. Comput. Appl. Math., 246 (2013), pp. 52-64.
  • M. Bause, F. Brunner, P. Knabner, F. Radu, An improved optimal order mixed finite element method for semilinear transport problems, Numerical Mathematics and Advanced Applications, A. Cangiani et al. (Hrsg.), Springer, Berlin (2013), pp. 247-256.
  • M. Bause, S. Schwegler, Analysis of stabilized higher-order finite element approximation of nonstationary and nonlinear convection-diffusion-reaction equations, Comput. Methods Appl. Mech. Engrg., 209-212 (2012), pp. 184-196.
  • F. Brunner, F. Radu, M. Bause, P. Knabner, Optimal order convergence of a modified BDM mixed finite element scheme for reactive transport in porous media, Advances in Water Resources, 35 (2012), pp. 163-171.
  • M. Bause, J. Hoffmann, P. Knabner, First-order convergence of multi point flux approximation on triangular grids and comparison with Mixed Finite Element Methods, Numer. Math., 116 (2010), pp. 1-29
  • N. Margenberg, F. X. Kärtner, M. Bause, Optimal Dirichlet Boundary Control by Fourier Neural Operators Applied to Nonlinear Optics, J. Comput. Phys., submitted (2023), pp. 1-43; arXiv:2307.07292.
  • M. Anselmann, M. Bause, N. Margenberg, P. Shamko, Benchmark computations of dynamic poroelasticity, Proc. Appl. Math. Mech., submitted (2023), pp. 1-6; arXiv:2307.02057.
  • M. Anselmann, M. Bause, N. Margenberg, P. Shamko, An energy-efficient GMRES-Multigrid solver for space-time finite element computation of dynamic poro- and thermoelasticity, Comput. Mech., submitted (2023), pp. 1-30; arXiv:2303.06742.
  • M. Anselmann, M. Bause, A geometric multigrid method for space-time finite element discretizations of the Navier-Stokes equations and its application to 3d flow simulation, ACM Trans. Math. Softw., 49 (2023), Article No.: 5, pp. 1-25, https://doi.org/10.1145/3582492; arXiv:2107.10561.
  • M. P. Bruchhäuser, M. Bause, A cost-efficient space-time adaptive algorithm for coupled  flow and transport, J. Comput. Methods Appl. Math., accepted (2023), pp. 1-31, https://doi.org/10.1515/cmam-2022-0245; arXiv:2212.02954.
  • N. Margenberg, Franz X. Kärtner, M. Bause, Accurate simulation of THz generation with Finite-Element Time Domain methods, Opt. Express, accepted (2023), pp. 1-23, https://doi.org/10.1364/OE.480793; arXiv:2211.06854.
  • M. P. Bruchhäuser, U. Köcher, M. Bause, On the implementation of an adaptive multirate framework for coupled transport and flow, J. Sci. Comput. 93, 59 (2022); https://doi.org/10.1007/s10915-022-02026-z; arXiv:2202.03748v1.
  • M. Anselmann, M. Bause, Cut finite element methods and ghost stabilization techniques for space-time discretizations of the Navier–Stokes equations, Int. J. Numer. Meth. Fluids,  94 (2022), pp. 775-802, doi: 10.1002/fld.5074, arXiv:2103.16249.
  • M. Bause, M. Anselmann, U. Köcher, F. A. Radu, Convergence of a continuous Galerkin method for hyperbolic-parabolic systems, Comput. Math. with Appl., submitted (2022), pp. 1-24; arXiv:2201.12014.
  • M. Anselmann, M. Bause, Efficiency of local Vanka smoother geometric multigrid preconditioning for space-time finite element methods to the Navier-Stokes equations, Proc. Appl. Math. Mech., 22 (2022), e202200088, doi: 10.1002/pamm.202200088.
  • M. Bause, M. Anselmann, Space-time finite element and multigrid methods for the Navier-Stokes equations on evolving and static domains, Oberwolfach Report No. 06/2022, doi: 10.4171/OWR/2022/6, pp. 11-14.
  • N. Margenberg, D. Hartmann, C. Lessig, T. Richter, A neural network multigrid solver for the Navier-Stokes equations, J. Comput. Phys., 2022, https://doi.org/10.1016/j.jcp.2022.110983.
  • N. Margenberg, C. Lessig, T. Richter, Structure preservation for the Deep Neural Network Multigrid Solver, Electron. Trans. Numer. Anal., 2022, https://doi.org/10.1553/etna_vol56s86.
  • D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassmöller, T. Heister, L. Heltai, U. Köcher, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, S. Proell, K. Simon, B. Turcksin, D. Wells, J. Zhang, The deal.II Library, Version 9.3, J. Numer. Math. 29(3): 171-186 (JNUM), 2021 [ preprint ] doi:10.1515/jnma-2021-0081.
  • M. Bause, M. Lymbery, K. Osthues, C1-conforming variational discretization of the bi-harmonic wave equation, Computers and Mathematics with Applications, submitted (2021), pp. 1-19; arXiv:2107.03906.
  • M. Anselmann, M. Bause, Numerical convergence of discrete extensions in a space-time finite element, fictitious domain method for the Navier-Stokes equations, PAMM Proc. Appl. Math. Mech., 21 (2021), doi:10.1002/pamm.202100011 (2021), pp. 1–2; arXiv:2107.01077.
  • S. De, B. S. M. Ebna Hai, A. Doostan, M. Bause, Prediction of ultrasonic guided wave propagation in solid-fluid and their interface under uncertainty using machine learning, J. Eng. Mech., 148 (2022), 04021161; arXiv:2105.02813.
  • M. Bause, M. P. Bruchhäuser, U. Köcher, Flexible goal-oriented adaptivity for higher-order space-time discretizations of transport problems with coupled flow, Comput. Math. Appl., in press (2020), https://doi.org/10.1016/j.camwa.2020.08.028; https://arxiv.org/abs/2002.06855v2.
  • Ebna Hai, B.S.M., and Bause, M., Modelling and Simulation of Ultrasonic Guided Waves Propagation in the Fluid-Composite Structure Interaction. In proceedings of: the 12th International Workshop on Structural Health Monitoring, Sept 10-12, 2019, Stanford University, CA, USA. In: F-K. Chang and F. Kopsaftopoulos (Ed.), Structural Health Monitoring 2019: Enabling Intelligent Life-cycle Health Management for Industry Internet of Things (IIOT). Vol. 2, pp 1963–1970, ISBN: 978-1-60595-601-5, DEStech Publications Inc., USA. 2019. doi:10.12783/shm2019/32328.
  • Ebna Hai, B.S.M., and Bause, M., Finite Element Modelling of Ultrasonic Guided Waves Propagation in the Fluid-Composite Structure Interaction“. Keynote Lecture in Coupled Problems/ Multi-field problems in porous media mechanics. In proceedings of: the 8th GACM Colloquium on Computational Mechanics, ISBN: 978-3-7376-5093-9, pp 319–322, 2019. doi:10.19211/KUP9783737650939
  • B. S. M. Ebna Hai, M. Bause, Numerical study and comparison of alternative time discretization schemes for an ultrasonic guided wave propagation problem coupled with fluidstructure interaction, Comput. Math. Appl., 78 (2019), pp. 2867-2885.
  • M. Bause, J. W. Both, F. A. Radu, Iterative Coupling for Fully Dynamic Poroelasticity, Numerical Mathematics and Advanced Applications: Proceedings of ENUMATH 2019 (submitted), pp. 1-8; arXiv:1912.05174.
  • M. Anselmann, M. Bause,  Higher order Galerkin-collocation time discretization with Nitsche’s method for the Navier-Stokes equations,  Math. Comp. Simul., 189 (2021), pp. 141-162; doi:10.1016/j.matcom.2020.10.027.
  • M. Bause, M. Anselmann, A higher order fictitious domain method for the Navier-Stokes equations, PAMM Proc. Appl. Math. Mech., 20 (2020), e202000038, doi: 10.1002/pamm.202000038.
  • Ebna Hai, B. S. M., Bause, M. Numerical study and comparison of alternative time discretization schemes for an ultrasonic guided wave propagation problem coupled with fluid–structure interaction. Computers & Mathematics with Applications, Vol. 78(9), pp 2867-2885, 2019. doi:10.1016/j.camwa.2019.01.009.
  • Ebna Hai, B.S.M., Bause, M., and Kuberry P. A. Modeling Concept and Numerical Simulation of Ultrasonic Waves Propagation in a Moving Fluid-Structure Domain based on a Monolithic Approach. Applied Mathematical Modelling, Vol. 75, pp 916-939, 2019. doi:10.1016/j.apm.2019.07.007.
  • U. Köcher, M. P. Bruchhäuser, M. Bause, Efficient and scalable data structures and algorithms for goal-oriented adaptivity of space-time FEM codes, SoftwareX, 10 (2019), 1-6, 100239, open access, open source, 2019; arXiv:1812.08558; code on github:dtm-project/dwr-diffusion; doi:10.1016/j.softx.2019.100239.
  • M. Bause, M. Anselmann, Comparative study of continuously differentiable Galerkin time discretizations for the wave equation, Proceedings in Applied Mathematics & Mechanics, 19 (2019), e201900144, DOI: 10.1002/pamm.201900144.
  • M. Anselmann, M. Bause, Numerical study of Galerkin-collocation approximation in time for the wave equation, in W. Dörfler et al. (eds.), Mathematics of Wave Phenomena, Trends in Mathematics, Birkhäuser, Cham, 2020, pp. 15-36; doi:10.1007/978-3-030-47174-3_2.
  • M. Anselmann, M. Bause, S. Becher, G. Matthies, Galerkin-collocation approximation in time for the wave equation and its post-processing, ESAIM: M2AN, 54 (2020), p. 2099-2123; arXiv:1908.08238.
  • M. Bause, U. Köcher, F. A. Radu, F. Schieweck, Post-processed Galerkin approximation of improved order for wave equations, Math. Comp., 89 (2020), pp. 595-627; doi:10.1090/mcom/3464.
  • B. S. M. Ebna Hai, M. Bause, P. A. Kuberry, Modeling and simulation of ultrasonic guided waves propagation in the fluid-structure domain by a monolithic approach, J. Fluid Struct., 88 (2019), pp. 100-121.
  • M. P. Bruchhäuser, K. Schwegler, M. Bause, Numerical study of goal- oriented error control for stabilized finite element methods, in Th. Apel et al. (eds.), Advanced Finite Element Methods with Applications: Selected Papers from the 30th Chemnitz Finite Element Symposium 2017, Lecture Notes in Comput. Sci. Eng., vol. 128, Springer, Cham, pp. 85-106 (2019); DOI: 10.1007/978-3-030-14244-5_5.
  • M. Bause, Iterative coupling of mixed and discontinuous Galerkin methods for poroelasticity, in F. Radu et al. (Hrsg.),  Numerical Mathematics and Advanced Applications, Lecture Notes in Comput. Sci. Eng. 126, Springer, Cham, 2019, pp. 551-560.
  • U. Köcher, Influence of the SIPG penalisation on the numerical properties of linear systems for elastic wave propagation, in F. A. Radu et al. (eds.), Numerical Mathematics and Advanced Applications, Lecture Notes in Comput. Sci. Eng. 126, Springer, Cham, 2019, pp. 215-223; arXiv:1712.05594.
  • M. P. Bruchhäuser, K. Schwegler, M. Bause, Dual weighted residual based  error control for nonstationary convection-dominated equations: potential or ballast?, in G. R. Barrenechea, J. Mackenzie (eds.), Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018, Lecture Notes in Comput. Sci. Eng., vol. 135, Springer, Cham (2020); arXiv: 1812.06810.
  • J. Both, U. Köcher, Numerical investigation on the fixed-stress splitting scheme for Biot’s equations: Optimality of the tuning parameter, in F. A. Radu et al. (eds.), Numerical Mathematics and Advanced Applications, Lecture Notes in Comput. Sci. Eng. 126, Springer, Cham, pp. 789-797; arXiv:1801.08352.
  • U. Köcher, M. Bause, A mixed discontinuous-continuous Galerkin times discretisation for Biot’s system, 2018, pp. 1–19; arXiv:1805.00771.
  • M. Bause, R. Radu, U. Köcher, Space-time finite element approximation of the Biot poroelasticity system with iterative coupling, Comput. Meth. Appl. Mech. Engrg., 320 (2017), pp. 745–768
  • M. Bause, F. A. Radu, U. Köcher, Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space, Numer. Math. 137 (2017), pp. 773–818
  • B. S. M. Ebna Hai, Finite Element Approximation of Ultrasonic Wave Propagation under Fluid-Structure Interaction for Structural Health Monitoring Systems, PhD Thesis, Department of Mechanical Engineering, Helmut Schmidt University Hamburg – University of the Federal Armed Forces Hamburg, pp. 1–201 (2017), http://edoc.sub.uni-hamburg.de/hsu/volltexte/2017/3182/, doi:10.24405/4306
  • M. Bause, U. Köcher, Iterative coupling of variational space-time methods for Biot’s system of poroelasticity, in B. Karasözen et al. (eds.), Numerical Mathematics and Advanced Applications ENUMATH 2015, Springer, Cham, 2016, pp. 143-151
  • M. Bause, U. Köcher, Variational time discretization for mixed finite element approximations of nonstationary diffusion problems, Journal of Computational and Applied Mathematics, 289 (2015), pp. 208-224
  • U. Köcher, M. Bause, Variational space-time methods for the wave equation, Journal of Scientific Computing, 61 (2014), pp. 424-453
  • E. Bänsch, M. Bause, A. Brenner, A-priori error analysis for finite element approximations of Stokes problem on dynamic meshes, IMA J. Numer. Anal., 34 (2014), pp. 123-146
  • M. Bause, S. Schwegler, Higher order finite element approximation of multicomponent reactive transport with small diffusion, J. Comput. Appl. Math., 246 (2013), pp. 52-64
  • M. Bause, F. Brunner, P. Knabner, F. Radu, An improved optimal order mixed finite element method for semilinear transport problems, Numerical Mathematics and Advanced Applications, A. Cangiani et al. (Hrsg.), Springer, Berlin (2013), pp. 247-256
  • M. Bause, S. Schwegler, Analysis of stabilized higher-order finite element approximation of nonstationary and nonlinear convection-diffusion-reaction equations, Comput. Methods Appl. Mech. Engrg., 209-212 (2012), pp. 184-196
  • F. Brunner, F. Radu, M. Bause, P. Knabner, Optimal order convergence of a modified BDM mixed finite element scheme for reactive transport in porous media, Advances in Water Resources, 35 (2012), pp. 163-171
  • M. Bause, J. Hoffmann, P. Knabner, First-order convergence of multi point flux approximation on triangular grids and comparison with Mixed Finite Element Methods, Numer. Math., 116 (2010), pp.- 1-29
  • M. Bause, Performance of stabilized higher-order methods for non-stationary convection-diffusion-reaction equations, in C. Clavero et al. (eds.), BAIL 2010 – Boundary and Interior Layers, Computational and Asymtotic Methods, Springer, Berlin, 2010, pp. 11-20
  • M. Bause, Stabilized finite element methods with shock-capturing for nonlinear convection-diffusion-reaction models, in G. Kreiss et al. (eds.), Numerical Mathematics and Advanced Applications ENUMATH 2009, Springer, Berlin, 2010, pp. 125-134
  • F. Radu, M. Bause, P. Knabner, W. Friess, I. Metzmacher, Numerical simulation of drug release from collagen matrices by enzymatic degradation, Computing and Visualization in Science, 12 (2009), pp. 409-420
  • M. Bause, J. Hoffmann, Numerical study of mixed finite element and multipoint flux approximation of flow in porous media, in K. Kunisch et al. (eds.), Numerical Mathematics and Advanced Applications ENUMATH 2007, Springer, Berlin, 2008, pp. 433-440
  • F. Radu, M. Bause, A. Prechtel und S. Attinger, A mixed bybrid finite element discretization scheme for reactive transport in porous media, in K. Kunisch, et al. (eds.), Numerical Mathematics and Advanced Applications ENUMATH 2007, Springer, Berlin, 2008, pp. 513-520
  • M. Bause, Higher and lowest order mixed finite element methods for subsurface flow problems with solutions of weak regularity, Advances in Water Resources, 31 (2008), pp. 370-382
  • I. Metzmacher, F. Radu, M. Bause, P. Knabner, W. Friess, A model describing the effect of enzymatic degradation on drug release from collagen minirods, European Journal of Pharmaceutics and Biopharmaceutics, 67 (2007), pp. 349-360
  • M. Bause, W. Merz, Modeling, analysis and simulation of bioreactive multicomponent transport, in I. Figueiredo (eds.), Free Boundary Problems: Theory and Applications, Birkhäuser, Basel, 2006, pp. 65-74
  • M. Bause, On optimum convergence rates for higher order Navier-Stokes approximations, Part I: Error estimates for the spatial discretization, IMA Journal of Numerical Analysis, 25 (2005), 812-841
  • M. Bause, W. Merz, Higher Order regularity and approximation schemes for the monod model of biodegradation, Applied Numerical Mathematics, 55 (2005), pp. 154-172
  • S. Kräutle, M. Bause, A. Prechtel, F. Radu, P. Knabner, ParRichy: Parallel simulation of bioreactive multicomponent transport processes in porous media, in A. Bode, F. Durst (eds.), High Performance Computing in Science and Engineering, Springer, Berlin, 2005, pp. 181-192
  • M. Bause, P. Knabner, Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping, Computing and Visualization in Science, 7 (2004), pp. 61-78
  • M. Bause, P. Knabner, Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods, Advances in Water Resources, 27 (2004), pp. 565-581
  • M. Bause, P. Knabner, On uniform convergence rates for Eulerian and Lagrangian finite element approximations of convection-dominated diffusion problems, CALCOLO, 41 (2004), p. 1-26
  • M. Bause, Computational study of field-scale BTEX transport and biodegradation in the subsurface, in M. Feistauer et al. (eds.), Numerical Mathematics and Advanced Applications ENUMATH 2003, Springer, Berlin, 2004, pp. 112-122
  • M. Bause, SUPG and grad-div stabilized finite element methods for steady weakly compressible viscous flow, PAMM Proc. Appl. Math. Mech., 4 (2004), pp. 696-697
  • M. Bause, J. Heywood, A. Novotny, M. Padula, On some approximation schemes for steady compressible viscous flow, Journal of Mathematical Fluid Mechanics, 5 (2003), pp. 201-230
  • M. Bause, P. Knabner, Uniform error analysis for Lagrange- Galerkin approximations of convection-dominated problems, SIAM Journal on Numerical Analysis, 39 (2002), pp. 1954-1984
  • F. Radu, M. Bause, P. Knabner, G. Lee, W. Friess, Modeling of drug release from collagen matrices, Journal of Pharmaceutical Sciences, 91 (2002), pp. 964-972
  • M. Bause, J. Heywood, A. Novotny, M. Padula, An iterative scheme for steady compressible viscous flow, modified to treat large potential forces, in J. Neustupa, P. Penel (eds.), Mathematical Fluid Mechanics: Recent Results and Open Questions, Birkhäuser, Basel, 2001, pp. 27-45
  • M. Bause, Scales of Ɛ-uniform a priori estimates for nonstationary convection-dominated diffusion problems, Annali dell’Università di Ferrara, Scienze Matematiche, 46 (2000), pp. 115-137
  • M. Bause, On fractional powers of the Stokes operator in Lipschitz domains, R. Salvi (ed.), The Navier-Stokes Equations: Theory and Numerical Methods, Pitman Research Notes in Mathematics, Series 388, Longman, Harlow, 1998, pp. 152-159
  • G. Judakova, M. Bause, Numerical investigation of multiphase flow in pipelines, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 11(9) (2017), pp. 1493-1499.
  • 10), pp.- 1-29
  • G. Judakova, M. Bause, Numerical investigation of multiphase flow in pipelines, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 11(9) (2017), pp. 1493-1499.

Selected Talks

in 2018

  • M. Bause: Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach Workshop, Reactive Flows in Deformable, Complex Media, Tba
  • M. Bause: KIT, Karlsruhe, Conference on Mathematics of Wave Phenomena, Post-processed Galerkin approximation of improved order for wave equations
  • M. Bause: Glasgow (Scotland), 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7), On the approximation of the fully dynamic system of flow in deformable porous media
  • M. Bause: Leiden (The Netherlands), Lorentz Center Workshop, The Computational Mathematics Aspects of Porous Media, and Fluid Flow, On some aspects of the approximation of Biot’s system of poroelasticity
  • M. Bause: Lofthus Hardanger (Norway), Workshop on Adaptive model and solver computations for multiphase flow in porous media, Post-processing in variational time discretization for adaptive time step and goal-oriented error control
  • M. Bause: TU Dresden, Dresdner Mathematisches Seminar, Space-time finite element approximation of wave phenomena: Post-processing, error analysis and applications
  • M. P. Bruchhäuser: Glasgow (Scotland), International Conference on Boundary and Interior Layers (BAIL 2018), Goal-oriented Error Control for Stabilized Approximations of Convection-dominated Problems
  • M. P. Bruchhäuser: Prague (Czech Republic), International Conference Application of Mathematics 2018, Goal-oriented Error Control for Stabilized Finite Element Methods
  • M. P. Bruchhäuser: Berlin (Germany), 13th International Workshop on Variational Multiscale and Stabilized Finite Elements (VMS 18), Adaptive Methods and Efficient Data Structures for Stabilized Finite Element Methods

in 2019

Open Campus 2018

Prof. Dr. Markus Bause
Prof. Dr. Markus Bause honoured with the teaching award 2018 for professors
Open Campus 2018: Numerical Mathematics
Open Campus 2018: Numerical Mathematics

Minisymposia and Workshops

  • M. Bause and F. A.: Radu: Glasgow (2018), 6th European Conference on Computational Mechanics (Solids, Structures and Coupled Problems) (ECCM 6) and 7th European Conference on Computational Fluid Dynamics (ECFD 7), Recent advances in simulation of flow in Deformable porous media
  • M. Bause and F. A.: Radu: Hamburg (2017), International Workshop on Flow in Deformable Porous Media: Numerics and Benchmarks (PDF of poster here)
    Upcoming
  • M. Bause and F. A.: Radu: Brunel University London (2019), The Mathematics of Finite Elements and Applications, Advances in Space-Time Finite Element Methods

Miscellaneous

  • M. Bause: Research visit at the University of Bergen, Prof. Dr. F. A. Radu, February 2018
  • U. Köcher: Research visit at the University of Texas at Austin, Prof. Dr. M. Wheeler, May 2018
  • M. Anselmann: Participation in the summer school on hyperbolic conservation laws, University of Hasselt (Belgium), June 2018
HSU

Letzte Änderung: 25. November 2024