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Ordinal time series X1, . . . , Xn from process (Xt)Z with

ordered qualitative range S = {s0, s1, . . . , sd}, s0 < . . . < sd.

Notations: pmf p = (p0, . . . , pd)
⊤ with pj = P (X = sj),

cdf f = (f0, . . . , fd−1)
⊤ with fj = P (X ≤ sj), and fd = 1.

Applications in various fields of practice, such as

environmental science, econometrics, finance, or health science,

see Liu et al. (2022), Weiß (2020), Weiß & Swidan (2024b).

Typically, range S rather small (or only few categories attained

during observation period), such as 3–6 categories.
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Major aim of time series analysis:

predict future outcomes of underlying process (DGP).

Recent, very comprehensive review by Petropoulos et al. (2022):

only little research on discrete-valued processes, and if so,

then clear focus on count time series (quantitative!).

There, coherent forecasting by Freeland & McCabe (2004):

approach for point forecasts (PFs) coherent

if generated forecasts only attain values in actual range.

Coherency requirement can also be extended to

prediction intervals (PIs) and pmf forecasts (PMFFs).
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Comprehensive analyses of coherent PFs, PIs, and PMFFs

for count time series by Homburg et al. (2019, 2021, 2023).

Present research: comprehensive investigation of

coherent forecasting for ordinal time series.

Outline:

• Coherent ordinal PFs, PIs, and PMFFs,

criteria for evaluating their forecast performance.

• Simulation study: forecast performance for various ordinal

DGPs, considering effect of estimated model parameters.

• Application to ordinal t.s. about air quality in Beijing.
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Coherent Point Forecasts: h-step-ahead condit. median:

x̂n+h = min
{
y ∈ S

∣∣∣ P (
Xn+h ≤ y | xn, . . . , x1

)
≥ 0.5

}
.

PF value equiv. as “rank count” în+h ∈ {0, . . . , d} (Weiß, 2020),

defined by x̂n+h = ŝin+h
, how many categories apart from s0.

Remark: Pruscha (1995) and Pruscha & Göttlein (2003)

define mean-based PF related to în+h, but not coherent.

Performance metrics: PCP = P
(
Xn+h = x̂n+h

∣∣∣ xn, . . . , x1).
To use natural ordering of S: “k-nearest-neighbour matching”,

k-NNM = P

(
Xn+h ∈

{
smax{0, în+h−k}, . . . , smin{d, în+h+k}

} ∣∣∣ xn, . . . , x1).
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Coherent Interval Forecasts for coverage pcov ∈ (0; 1):

P (sl ≤ Xn+h ≤ su | xn, . . . , x1) ≥ pcov.

Computational scheme from Homburg et al. (2021) applicable,

also their performance criteria based on coverage.

However, rather poor performance in simulation study,

because range S typically rather small,

which often causes degenerate or trivial PIs.

⇒ Better kind of “trustworthy” forecasts: PMFFs.
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Coherent Pmf Forecasts: PMFFs intensively discussed for

count time series, among others McCabe et al. (2011) and

Homburg et al. (2023). Pruscha (1995) and Pruscha & Göttlein

(2003) used PMFFs also for ordinal t.s.

While PF ∈ S and PI ⊆ S and thus coherent,

PMFF takes full predictive pmf of Xn+h

∣∣∣ xn, . . . , x1 as forecast.

PMFF (d+1)-dimensional vector of conditional probabilities.

Maximally informative forecast value, also coherent

as range S of ordinal time series is PMFF’s support.
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PMFF notations:

• If true model for PMFF computation, PMFF vector p̂(n,h)0

(“true PMFF”), where p̂
(n,h)
0,j = P (Xn+h = sj | xn, . . . , x1).

• If estimated model,then p̂(n,h) and p̂
(n,h)
j instead.

Evaluate forecast inaccuracy due to estimation uncertainty

by MSE-based criteria like in Homburg et al. (2023).

Global MSE:
∥∥∥p̂(n,h) − p̂(n,h)0

∥∥∥2 =
d∑

j=0
(p̂(n,h)j − p̂

(n,h)
0,j )2.

Local MSEs:
d∑

j=0
(p̂(n,h)j − p̂

(n,h)
0,j )2 1(f̂(n,h)0,j ≤ 0.25),

d∑
j=0

(p̂(n,h)j − p̂
(n,h)
0,j )2 1(f̂(n,h)0,j ≥ 0.90).
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Comprehensive simulation study, where simulated time series

x1, . . . , xn used for ML-model fitting and forecast computation.

Various DGPs from

• WDARMA family of Weiß & Swidan (2024a),

• logit AR(1) model of Fokianos & Kedem (2003),

• soft-clipping AR family of Weiß & Swidan (2025),

• logit(µ) HMM of Weiß & Swidan (2024b).

PFs, PIs, and PMFFs for forecast horizons h = 1, . . . ,5,

performance evaluation by above metrics.

Detailed simulation results in main paper.
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Main findings:

• Estimation uncertainty only little effect on coherent PFs due

to discreteness, but reliability of PFs severely depends on

actual DGP and parametrization.

• PIs for ordinal t.s. of limited use, as true coverage often far

beyond pcov, so PIs for different DGPs hardly comparable.

• Forecast performance of PMFFs not suffer from discreteness,

well explainable behavior w.r.t. sample size, model structure,

and extent of serial dependence.
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PMFFs also practical advantage of providing full information

about forecast distribution to user, can judge which

category from S observed in future with which probability.

Final recommendation:

We discourage use of PIs for ordinal processes, but

combination of PF and PMFF attractive solution for practice.

PF and PMFF can also be combined visually in

well-interpretable way, see subsequent data application.

Christian H. Weiß — Helmut Schmidt University, Hamburg



MATH 

STAT 

Coherent Forecasting of
Air Quality in Beijing

Data Application



Data Application: Air Quality in Beijing MATH 

STAT 

Ordinal t.s. on daily air quality in Beijing from Liu et al. (2022),

categories s0 =“excellent” (E), . . . , s5 =“sev. polluted” (SeP).

Data from 2018 for model fitting (n = 365),

from January 2019 for out-of-sample forecasting.
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Weiß & Swidan (2024a) used WDAR(1) model for 2018 data.
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PMFFs can be expressed by stripes of gray levels,

complemented by PFs as white square.

(a) 1-step-ahead forecasts for t = 1, . . . ,31 given xn+t−1,

(b) h-step-ahead forecasts (h = 1, . . . ,31) given xn = s1.

(a) 0 5 10 15 20 25 30

T+t

A
ir 

qu
al

ity
 fo

re
ca

st
s

E

G

SlP

MP

HP

SeP

0 5 10 15 20 25 30 t (b) 0 5 10 15 20 25 30

T+t

A
ir 

qu
al

ity
 fo

re
ca

st
s

E

G

SlP

MP

HP

SeP

0 5 10 15 20 25 30 t

Christian H. Weiß — Helmut Schmidt University, Hamburg



Data Application: Air Quality in Beijing MATH 

STAT 

h-step-ahead forecasting based on fitted WDAR(1) model,

last observation as circle at h = 0.

PFs in (a), and PMFFs in (b) and (c).
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Possible application: risk analysis, where

• “Xn+t ≥ s4” ≈ high risk for people’s health,

• “Xn+t ≤ s1” ≈ low-risk day.

Using PMFFs, we compute

P (“low risk” | xn+t−1)

≈


0.846 if xn+t−1 = s0,
0.714 if xn+t−1 = s1,
0.449 if xn+t−1 = s2,
0.316 if xn+t−1 ≥ s3;

P (“high risk” | xn+t−1)

≈


0.024 if xn+t−1 ≤ s2,
0.157 if xn+t−1 = s3,
0.421 if xn+t−1 = s4,
0.554 if xn+t−1 = s5.

Other applications: identify “anomalous” observations

(low predictive probability), such as days 3, 4, 12 above;

impute missing values in ordinal time series.
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• Coherent PFs, PIs, and PMFFs for ordinal time series,

corresponding metrics for performance evaluation.

• Use of PIs discouraged, but

combination of PF and PMFF attractive for practice.

• Visual combination of PF and PMFF well-interpretable,

various applications in practice.

Future research:

• accounting for estimation uncertainty via resampling,

• risk forecasting in ordinal time series.
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