Weighted Discrete ARMA Models for Categorical Time Series

HELMUT SCHMIDT UNIVERSITÄT Universität der Bundeswehr Hamburg

MATH Stat

Christian H. Weiß, Osama Swidan

Department of Mathematics & Statistics,

Helmut Schmidt University, Hamburg

Funded by DFG – Projektnr. 516522977.

Discrete ARMA Models for Time Series

Classical ARMA models popular for *real-valued* t.s.,

but cannot be applied to *discrete-valued* t.s.

Many attempts to define "ARMA-like" models (Weiß, 2018), where **NDARMA model** (new discrete ARMA) of Jacobs & Lewis (1983) applicable even to **categorical t.s.**:

Let X_t have categorical range $S = \{s_0, \dots, s_d\}$, let innovations $(\epsilon_s)_{s \leq t}$ be i.i.d. on S.

Let $D_t = (D_{t,-q}, \dots, D_{t,0}, \dots, D_{t,p})$ be i.i.d. multinomial via Mult(1; $\phi_{-q}, \dots, \phi_0, \dots, \phi_p$), then

$$X_{t} = \sum_{i=1}^{p} D_{t,i} X_{t-i} + D_{t,0} \epsilon_{t} + \sum_{j=1}^{q} D_{t,-j} \epsilon_{t-j}.$$

NDARMA model

$$X_t = \sum_{i=1}^{p} D_{t,i} X_{t-i} + D_{t,0} \epsilon_t + \sum_{j=1}^{q} D_{t,-j} \epsilon_{t-j},$$

$$D_t \sim \text{Mult}(1; \phi_{-q}, \dots, \phi_0, \dots, \phi_p)$$

looks like ARMA at first glance, but major differences:

 X_t randomly selects outcome of either one of last p observations, X_{t-1}, \ldots, X_{t-p} , or one of last q + 1 innovations, $\epsilon_t, \ldots, \epsilon_{t-q}$.

Pros: serial dependence structure satisfies YW equations, random selection mechanism applicable to any range.

Cons: sample paths with long "runs" and sudden jumps, mainly relevant for nominal t.s.; only positive dependence.

⇒ Omit aforementioned "cons" by new and flexible extension of NDARMA model!

Outline:

- Concept of "weighting operators", tailor-made for, e.g., ordinal time series or negative dependence.
- Stochastic properties of resulting weighted discrete ARMA (WDARMA) models.
- Parameter estimation, data application to an ordinal time series on air quality in Beijing.

Weighting Operators and WDARMA Models

Definition & Approaches

Notations: 0_k (1_k) is *k*-dim. vector of zeros (ones), $\mathbf{I}_k = \operatorname{diag}(1_k)$ is $k \times k$ -identity matrix, \mathbf{E}_k (\mathbf{O}_k) is $k \times k$ -matrix of ones (zeros), $\mathbb{S}_k := \{ u \in (0; 1)^k \mid \mathbf{1}_k^\top u = 1 \}, \quad \overline{\mathbb{S}}_k := \{ u \in [0; 1]^k \mid \mathbf{1}_k^\top u = 1 \}$ denote open and closed *k*-part unit simplex, respectively.

If X categorical r.v. with range S, we assume **pmf vector** $p = (p_0, \ldots, p_d)^\top \in \mathbb{S}_{d+1}$, i. e., each $p_i = P(X = s_i) > 0$. We associate **weight vector** w_j with each $s_j \in S$, but requirement $w_j \in \overline{\mathbb{S}}_{d+1}$ allows for zero entries.

Weight vectors \Rightarrow weight matrix $\mathbf{W} = (w_0, \dots, w_d)$, which is left-stochastic: $\mathbf{1}_{d+1}^\top \mathbf{W} = \mathbf{1}_{d+1}^\top$.

As w_j columns of \mathbf{W} , denote entries as w_{ij} : $w_j = (w_{0j}, \dots, w_{dj})^\top$. Finally, random weighting operator $\mathcal{W}(\cdot)$, where $\mathcal{W}(s_j)$ generates categorical value from S according to w_j , i. e., $P(\mathcal{W}(s_j) = s_i) = w_{ij}$. Short-hand notation: $\mathcal{W}(s_j) \sim w_j$. If applied to categorical r.v. $X \sim p$, we assume conditionally: $\mathcal{W}(X) | \{X = s_j\} \sim w_j$. Thus, by conditioning,

 $P(\mathcal{W}(X) = s_i) = \sum_{j=0}^d w_{ij} p_j.$ (= *i*th entry of product $\mathbf{W} p$)

Requirement $w_i \in \overline{\mathbb{S}}_{d+1}$ implies that

each column of \mathbf{W} has at least one truly positive entry:

(W1) $\forall j \in \{0, \ldots, d\}$, there exists $i \in \{0, \ldots, d\}$ such that $w_{ij} > 0$.

But: To ensure that each state in S reachable after applying $\mathcal{W}(\cdot)$, analogous property for rows of **W** necessary.

From now on, we also assume:

(W2) $\forall i \in \{0, \ldots, d\}$, there exists $j \in \{0, \ldots, d\}$ such that $w_{ij} > 0$.

Consequence: If $X \sim p \in \mathbb{S}_{d+1}$,

then also $\mathcal{W}(X)$'s pmf vector contained in \mathbb{S}_{d+1} .

Examples for nominal r.v.:

Identity weighting $W = I_{d+1}$ preserves given category,

i.e., $\mathcal{W}(s_j) = s_j$ with probability one.

Used to embed NDARMA models into novel WDARMA class.

Reverse weighting $W = d^{-1} (E_{d+1} - I_{d+1})$:

given category *not* preserved but randomly "flipped" into other state, also see McGee & Harris (2012). Used for generating negative dependence in nominal t.s.,

in analogy to Jentsch & Reichmann (2019).

Examples for ordinal r.v.:

Triangular weighting:

 $w_0 = (\frac{2}{3}, \frac{1}{3}, 0, \ldots)^\top, \ldots, w_j = (\ldots, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \ldots)^\top, \ldots, w_d = (\ldots, 0, \frac{1}{3}, \frac{2}{3})^\top.$

Gives weight to current category and immediate neighbors, thus accounts for natural ordering among states.

Zero inflation, i. e., inflation of lowest state s_0 : $w_j = (1 - \omega) e_j + \omega e_0$, where e_j is *j*th unit vector. Thus, s_0 preserved, larger s_j change to s_0 with prob. ω . Easily generalized to inflate other or multiple states, also see Liu et al. (2022a).

Inspired by GDARMA model of Gouveia et al. (2018) and Möller & Weiß (2020) (which is defined for *quantitative* t.s.), we propose novel **WDARMA**(**p**, **q**) model

$$X_t = \sum_{k=1}^{\mathsf{p}} D_{t,k} \mathcal{W}_{t,k}(X_{t-k}) + D_{t,0} \epsilon_t + \sum_{l=1}^{\mathsf{q}} D_{t,-l} \mathcal{W}_{t,-l}(\epsilon_{t-l}),$$

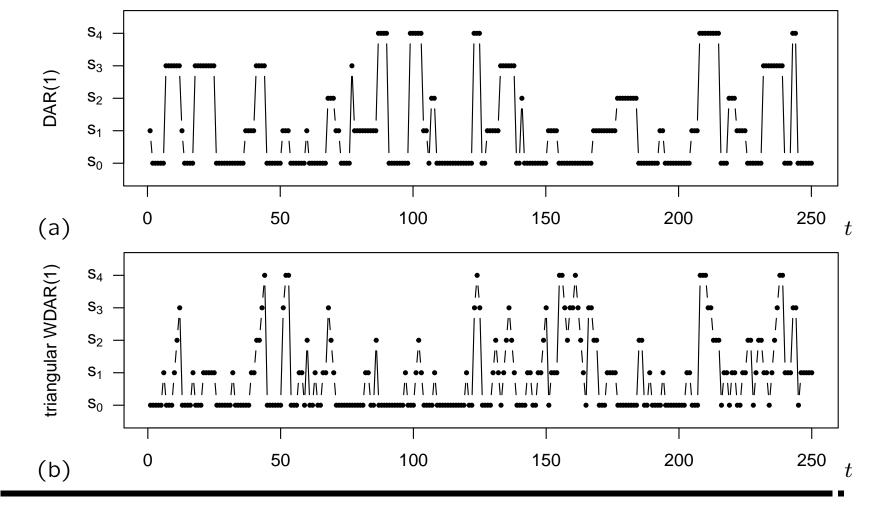
where operators $W_{t,\cdot}$ executed independently of other r.v.

WDARMA becomes NDARMA if identity weighting.

For simplicity, we assume that all $\mathcal{W}_{t,\cdot}$ have same **W**.

But existence proof and further stochastic properties extended to different \mathbf{W}_k and \mathbf{W}_{-l} at lags k, l in Weiß & Swidan (2024).

Example: Simulated ordinal WDAR(1) sample paths using (a) identity weighting and (b) triangular weighting.



Stationary WDARMA Processes

Stochastic Properties

Theorem: WDARMA(p,q) process $(X_t)_{\mathbb{Z}}$.

Then, $(X_t)_{\mathbb{Z}}$ ergodic and unique stationary solution.

 $(X_t)_{\mathbb{Z}}$ is φ -mixing with geometrically decreasing weights $(f_n)_{\mathbb{N}}$,

i.e., there exist a > 0 and $0 < \rho < 1$ such that $f_n = a \cdot \rho^n$.

Proof in Weiß & Swidan (2024) uses (W2) and (max{p,1} + max{q,1})-dimensional Markov-chain representation of $(X_t)_{\mathbb{Z}}$, transition matrix of which shown to be primitive.

Marginal distribution:

Let $p \in \mathbb{S}_{d+1}$ be pmf of stationary marginal dist. of $(X_t)_{\mathbb{Z}}$, let $\pi \in \mathbb{S}_{d+1}$ be the one of $(\epsilon_t)_{\mathbb{Z}}$.

Denote $\phi^{(p)} := \sum_{k=1}^{p} \phi_k$ and $\phi^{(q)} := \sum_{l=1}^{q} \phi_{-l}$.

Proposition: pmf vector satisfies

$$\left(\mathbf{I}_{d+1} - \phi^{(\mathsf{p})} \mathbf{W}\right) \mathbf{p} = \left(\phi_0 \mathbf{I}_{d+1} + \phi^{(\mathsf{q})} \mathbf{W}\right) \pi.$$

Bivariate distribution: For pairs (X_t, X_{t-h}) and (X_t, ϵ_{t-h}) , let

$$\mathbf{P}(h) = (p_{ij}(h))_{i,j=0,...,d} \text{ with } p_{ij}(h) = P(X_t = s_i, X_{t-h} = s_j),$$

$$\mathbf{\Pi}(h) = (\pi_{ij}(h))_{i,j=0,...,d} \text{ with } \pi_{ij}(h) = P(X_t = s_i, \epsilon_{t-h} = s_j).$$

Proposition: For stationary WDARMA model, it holds

$$\Pi(h) - p \pi^{\top} = \begin{cases} \sum_{k=1}^{\min\{h, p\}} \phi_k \mathbf{W} \left(\Pi(h-k) - p \pi^{\top} \right) \\ + \sum_{l=1}^{q} \phi_{-l} \delta_{lh} \mathbf{W} \left(\operatorname{diag}(\pi) - \pi \pi^{\top} \right) & \text{if } h > 0, \\ \phi_0 \left(\operatorname{diag}(\pi) - \pi \pi^{\top} \right) & \text{if } h = 0, \\ \mathbf{O}_{d+1} & \text{if } h < 0. \end{cases}$$

Theorem: For stationary WDARMA model, if h > 0,

$$\mathbf{P}(h) - p \, p^{\top} = \sum_{k=1}^{p} \phi_k \, \mathbf{W} \left(\mathbf{P}(h-k) - p \, p^{\top} \right) + \sum_{l=h}^{q} \phi_{-l} \, \mathbf{W} \left(\mathbf{\Pi}(l-h) - p \, \pi^{\top} \right)^{\top},$$

while $\mathbf{P}(0) = \operatorname{diag}(p)$ and $\mathbf{P}(-h) = \mathbf{P}(h)^{\top}.$

Above results allow to compute any relevant stochastic properties by solving kind of "Yule–Walker equations".

If $p \ge 2$, solution possible by using Kronecker product and vec-operator, see Weiß & Swidan (2024) for details.

In particular, exact computation of serial dependence measures

$$\kappa_{\text{nom}}(h) = \frac{\operatorname{tr}(\mathbf{P}(h) - p \, p^{\top})}{\operatorname{tr}(\mathbf{P}(0) - p \, p^{\top})}, \qquad \kappa_{\text{ord}}(h) = \frac{\operatorname{tr}(\mathbf{F}(h) - f f^{\top})}{\operatorname{tr}(\mathbf{F}(0) - f f^{\top})},$$

see Weiß (2020) for background.

Here,
$$f = (f_0, ..., f_{d-1}, f_d)$$
 with $f_i = P(X \le s_i)$,
 $F(h) = (f_{ij}(h))_{i,j=0,...,d}$ with $f_{ij}(h) = P(X_t \le s_i, X_{t-h} \le s_j)$.

Modeling Ordinal Air Quality Time Series

Estimation & Illustration

ML estimation particularly simple in WDAR(p) case, because then, $(X_t)_{\mathbb{Z}}$ is Markov process.

So log-likelihood computes as

$$\ell(\phi_1,\ldots,\phi_p,\pi) = \sum_{t=p+1}^n \ln\left(\sum_{k=1}^p \phi_k w_{i_t i_{t-k}} + (1-\phi^{(p)}) \pi_{i_t}\right).$$

Estimation by constrained numerical optimization,

$$\sum_{i=0}^{d} \pi_i = 1$$
 and $\phi^{(p)} = \sum_{k=1}^{p} \phi_k < 1.$

Normal asymptotics from Condition 5.1 in Billingsley (1961).

Good finite-sample performance confirmed by simulations, see Weiß & Swidan (2024) for details.

If $q \ge 1$, still efficient implementation of ML estimation possible by adapting recursive approach of Weiß et al. (2019).

For simplicity, let us focus on **WDARMA**(1,1) **model**. Define probabilities (for t = 2, ..., n)

$$b_{kl}^{(m)}(t) = P(\epsilon_t = s_k, \epsilon_{t-1} = s_l, X_t, \dots, X_2 \mid X_1, \epsilon_1 = s_m).$$

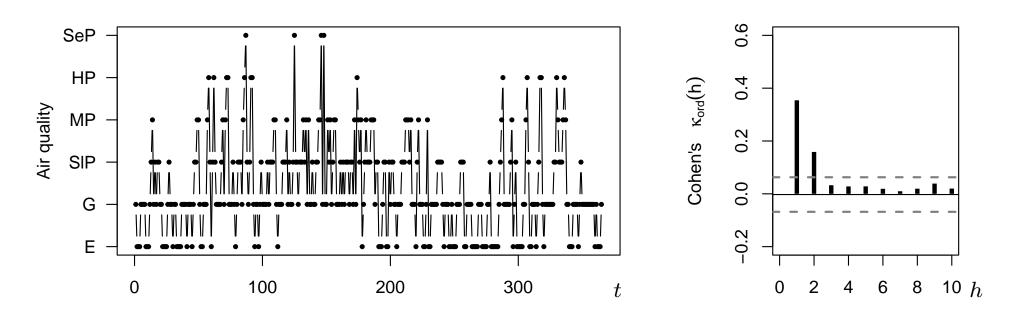
Likelihood follows from double sum $\sum_{k,l=0}^{d} b_{kl}^{(m)}(n)$. Distribution of (X_1, ϵ_1) from above YW equations.

Recursive scheme:

$$b_{kl}^{(m)}(t+1) = P(X_{t+1} | \epsilon_{t+1} = s_k, \epsilon_t = s_l, X_t) P(\epsilon_{t+1} = s_k) \sum_{j=0}^d b_{lj}^{(m)}(t)$$

$$b_{kl}^{(m)}(2) = \delta_{l,m} P(\epsilon_2 = s_k) P(X_2 | X_1, \epsilon_2 = s_k, \epsilon_1 = s_m).$$

Data example: Daily air quality in Beijing in 2018, taken from Liu et al. (2022b), with d + 1 = 6 categories $s_0 =$ "excellent" (E), ..., $s_5 =$ "severely polluted" (SeP).



AR-like dependence explainable by ordinary DAR model. But ordinal t.s., WDAR with triangular weighting more reasonable.

Information criteria for candidate models:

	DAR(1)	DAR(2)	DAR(3)	WDAR(1)	WDAR(2)	WDAR(3)
AIC	1009.3	200112	1006.7	958.9	955.4	958.2
BIC	1032.7		1037.9	982.3	982.7	989.4

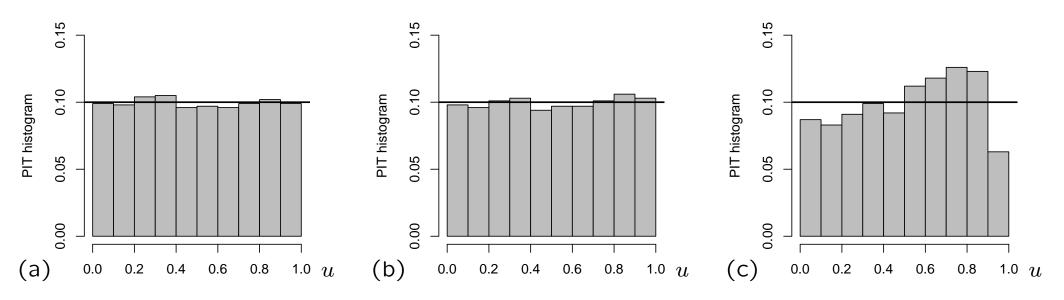
Parameter estimates (s. e.) of relevant WDAR models:

	π_1	π_2	π_3	π_{4}	π_5	ϕ_1	ϕ_2
WDAR(1)				0.034 (0.015)			
WDAR(2)				0.034 (0.016)			

Sample properties & stochastic properties of WDAR fits:

Marginal	f_0	f_1	f_2	f_3	f_4	IOV	skew
Data	0.211	0.625	0.847	0.951	0.989	0.471	0.449
WDAR(1) WDAR(2)	0.196 0.203	0.616 0.627	0.833 0.841	0.933 0.935	0.978 0.980	0.494 0.488	0.422 0.434
Serial	$\kappa_{ m ord}(1)$	$\kappa_{\rm ord}(2)$	$\kappa_{\rm ord}(3)$		$\kappa_{\sf nom}(1)$	$\kappa_{nom}(2)$	$\kappa_{nom}(3)$
Data	0.354	0.159	0.032		0.221	0.100	-0.024
WDAR(1) WDAR(2)	0.361 0.364	0.155 0.200	0.070 0.107		0.208 0.207	0.068 0.095	0.026 0.043

PIT histograms of fitted (a) WDAR(1) model, (b) WDAR(2) model, and (c) ZOBPAR model:



ZOBPAR model originally proposed by Liu et al. (2022b).

Altogether, both WDAR model perform nearly equally, more parsimonious WDAR(1) model preferable choice.

- WDARMA models flexibly adapted to negative serial dependencies or ordinal data.
- Stationary, ergodic, and φ -mixing; closed-form marginal and bivariate probabilities.
- Efficient implementation of ML estimation, successfully applied to air quality data.

Future research:

- Approaches for forecasting WDARMA processes.
- Control charts for monitoring WDARMA processes.

Thank You for Your Interest!

HELMUT SCHMIDT UNIVERSITÄT

Christian H. Weiß

Department of Mathematics & Statistics Helmut Schmidt University, Hamburg weissc@hsu-hh.de

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Projektnummer 516522977.

MATH STAT

Weiß & Swidan (2024) Weighted discrete ARMA models for categorical time series. *Journal of Time Series Analysis*, in press. $(\rightarrow \text{ open access})$

Billingsley (1961) Statistical Inference for Markov Processes. Chicago Press. Gouveia et al. (2018) A full ARMA model ... SERRA 32, 2495–2514. Jacobs & Lewis (1983) Stationary discrete auto... JTSA 4, 19–36. Jentsch & Reichmann (2019) Generalized binary ... Econometrics 7, 47. Liu et al. (2022a) Modeling air quality ... SERRA 36, 2835–2845. Liu et al. (2022b) Modeling normalcy-dominant ... JTSA 43, 460–478. McGee & Harris (2012) Coping with ... J Prob Stat 2012, 417393. Möller & Weiß (2020) Generalized discrete ARMA ... ASMBI 36, 641–659. Weiß (2018) An Introduction to Discrete-Valued Time Series. Wiley. Weiß (2020) Distance-based analysis ... JASA **115**, 1189–1200. Weiß et al. (2019) INARMA modeling ... Stats 2, 284–320.