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Classical ARMA models popular for real-valued t.s.,

but cannot be applied to discrete-valued t.s.

Many attempts to define “ARMA-like” models (Weiß, 2018),

where NDARMA model (new discrete ARMA) of

Jacobs & Lewis (1983) applicable even to categorical t.s.:

Let Xt have categorical range S = {s0, . . . , sd},

let innovations (ϵs)s≤t be i. i. d. on S.

Let Dt = (Dt,−q, . . . , Dt,0, . . . , Dt,p) be i. i. d. multinomial via

Mult(1; ϕ−q, . . . , ϕ0, . . . , ϕp), then

Xt =
p∑

i=1
Dt,iXt−i + Dt,0 ϵt +

q∑
j=1

Dt,−j ϵt−j.
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NDARMA model

Xt =
∑p
i=1Dt,iXt−i + Dt,0 ϵt +

∑q
j=1Dt,−j ϵt−j,

Dt ∼ Mult(1; ϕ−q, . . . , ϕ0, . . . , ϕp)

looks like ARMA at first glance, but major differences:

Xt randomly selects outcome of either one of last p observations,

Xt−1, . . . , Xt−p, or one of last q +1 innovations, ϵt, . . . , ϵt−q.

Pros: serial dependence structure satisfies YW equations,

random selection mechanism applicable to any range.

Cons: sample paths with long “runs” and sudden jumps,

mainly relevant for nominal t.s.; only positive dependence.

Christian H. Weiß — Helmut Schmidt University, Hamburg



Discrete ARMA Models for Time Series MATH 

STAT 

⇒ Omit aforementioned “cons” by

new and flexible extension of NDARMA model!

Outline:

• Concept of “weighting operators”, tailor-made for,

e. g., ordinal time series or negative dependence.

• Stochastic properties of resulting

weighted discrete ARMA (WDARMA) models.

• Parameter estimation, data application to an

ordinal time series on air quality in Beijing.
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Notations: 0k (1k) is k-dim. vector of zeros (ones),

Ik = diag(1k) is k × k-identity matrix,

Ek (Ok) is k × k-matrix of ones (zeros),

Sk :=
{
u ∈ (0; 1)k

∣∣∣ 1⊤k u = 1
}
, Sk :=

{
u ∈ [0; 1]k

∣∣∣ 1⊤k u = 1
}

denote open and closed k-part unit simplex, respectively.

If X categorical r.v. with range S, we assume pmf vector

p = (p0, . . . , pd)
⊤ ∈ Sd+1, i. e., each pi = P (X = si) > 0.

We associate weight vector wj with each sj ∈ S,

but requirement wj ∈ Sd+1 allows for zero entries.
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Weight vectors ⇒ weight matrix W = (w0, . . . ,wd),

which is left-stochastic: 1⊤d+1W = 1⊤d+1.

As wj columns of W, denote entries as wij: wj = (w0j, . . . , wdj)
⊤.

Finally, random weighting operator W(·), where

W(sj) generates categorical value from S according to wj,

i. e., P
(
W(sj) = si

)
= wij. Short-hand notation: W(sj) ∼ wj.

If applied to categorical r.v. X ∼ p, we assume conditionally:

W(X) | {X = sj} ∼ wj. Thus, by conditioning,

P
(
W(X) = si

)
=

d∑
j=0

wij pj. (= ith entry of product W p)
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Requirement wj ∈ Sd+1 implies that

each column of W has at least one truly positive entry:

(W1) ∀ j ∈ {0, . . . , d}, there exists i ∈ {0, . . . , d} such that wij > 0.

But: To ensure that each state in S reachable after applying

W(·), analogous property for rows of W necessary.

From now on, we also assume:

(W2) ∀ i ∈ {0, . . . , d}, there exists j ∈ {0, . . . , d} such that wij > 0.

Consequence: If X ∼ p ∈ Sd+1,

then also W(X)’s pmf vector contained in Sd+1.
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Examples for nominal r.v.:

Identity weighting W = Id+1 preserves given category,

i. e., W(sj) = sj with probability one.

Used to embed NDARMA models into novel WDARMA class.

Reverse weighting W = d−1 (Ed+1 − Id+1):

given category not preserved but randomly “flipped”

into other state, also see McGee & Harris (2012).

Used for generating negative dependence in nominal t.s.,

in analogy to Jentsch & Reichmann (2019).
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Examples for ordinal r.v.:

Triangular weighting:

w0 = (23,
1
3,0, . . .)

⊤, . . . ,wj = (. . . , 14,
1
2,

1
4, . . .)

⊤, . . . ,wd = (. . . ,0, 13,
2
3)

⊤.

Gives weight to current category and immediate neighbors,

thus accounts for natural ordering among states.

Zero inflation, i. e., inflation of lowest state s0:

wj = (1− ω) ej + ω e0, where ej is jth unit vector.

Thus, s0 preserved, larger sj change to s0 with prob. ω.

Easily generalized to inflate other or multiple states,

also see Liu et al. (2022a).
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Inspired by GDARMA model of Gouveia et al. (2018) and Möller

& Weiß (2020) (which is defined for quantitative t.s.),

we propose novel WDARMA(p,q) model

Xt =
p∑

k=1
Dt,kWt,k(Xt−k) + Dt,0 ϵt +

q∑
l=1

Dt,−lWt,−l(ϵt−l),

where operators Wt,· executed independently of other r.v.

WDARMA becomes NDARMA if identity weighting.

For simplicity, we assume that all Wt,· have same W.

But existence proof and further stochastic properties extended

to different Wk and W−l at lags k, l in Weiß & Swidan (2024).
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Example: Simulated ordinal WDAR(1) sample paths

using (a) identity weighting and (b) triangular weighting.
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Theorem: WDARMA(p,q) process (Xt)Z.

Then, (Xt)Z ergodic and unique stationary solution.

(Xt)Z is φ-mixing with geometrically decreasing weights (fn)N,

i. e., there exist a > 0 and 0 < ρ < 1 such that fn = a · ρn.

Proof in Weiß & Swidan (2024) uses (W2) and

(max{p,1}+max{q,1})-dimensional

Markov-chain representation of (Xt)Z,

transition matrix of which shown to be primitive.
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Marginal distribution:

Let p ∈ Sd+1 be pmf of stationary marginal dist. of (Xt)Z,

let π ∈ Sd+1 be the one of (ϵt)Z.

Denote ϕ(p) :=
∑p
k=1 ϕk and ϕ(q) :=

∑q
l=1 ϕ−l.

Proposition: pmf vector satisfies(
Id+1 − ϕ(p)W

)
p =

(
ϕ0 Id+1 + ϕ(q)W

)
π.

Bivariate distribution: For pairs (Xt, Xt−h) and (Xt, ϵt−h), let

P(h) =
(
pij(h)

)
i,j=0,...,d

with pij(h) = P (Xt = si, Xt−h = sj),

Π(h) =
(
πij(h)

)
i,j=0,...,d

with πij(h) = P (Xt = si, ϵt−h = sj).
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Proposition: For stationary WDARMA model, it holds

Π(h)−pπ⊤ =



∑min{h,p}
k=1 ϕk W

(
Π(h− k)− pπ⊤)

+
∑q
l=1 ϕ−l δlhW

(
diag(π)− π π⊤)

if h > 0,

ϕ0
(
diag(π)− π π⊤)

if h = 0,

Od+1 if h < 0.

Theorem: For stationary WDARMA model, if h > 0,

P(h)−pp⊤ =
p∑

k=1
ϕk W

(
P(h−k)−pp⊤

)
+

q∑
l=h

ϕ−lW
(
Π(l−h)−pπ⊤)⊤,

while P(0) = diag(p) and P(−h) = P(h)⊤.
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Above results allow to compute any relevant stochastic proper-

ties by solving kind of “Yule–Walker equations”.

If p ≥ 2, solution possible by using Kronecker product and

vec-operator, see Weiß & Swidan (2024) for details.

In particular, exact computation of serial dependence measures

κnom(h) =
tr

(
P(h)− pp⊤

)
tr

(
P(0)− pp⊤

), κord(h) =
tr

(
F(h)− ff⊤)

tr
(
F(0)− ff⊤),

see Weiß (2020) for background.

Here, f = (f0, . . . , fd−1, fd) with fi = P (X ≤ si),

F(h) =
(
fij(h)

)
i,j=0,...,d

with fij(h) = P (Xt ≤ si, Xt−h ≤ sj).
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ML estimation particularly simple in WDAR(p) case,

because then, (Xt)Z is Markov process.

So log-likelihood computes as

ℓ(ϕ1, . . . , ϕp,π) =
∑n
t=p+1 ln

(∑p
k=1 ϕkwitit−k

+ (1− ϕ(p))πit

)
.

Estimation by constrained numerical optimization,∑d
i=0 πi = 1 and ϕ(p) =

∑p
k=1 ϕk < 1.

Normal asymptotics from Condition 5.1 in Billingsley (1961).

Good finite-sample performance confirmed by simulations,

see Weiß & Swidan (2024) for details.
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If q ≥ 1, still efficient implementation of ML estimation possible

by adapting recursive approach of Weiß et al. (2019).

For simplicity, let us focus on WDARMA(1,1) model.

Define probabilities (for t = 2, . . . , n)

b
(m)
kl (t) = P (ϵt = sk, ϵt−1 = sl, Xt, . . . , X2 | X1, ϵ1 = sm).

Likelihood follows from double sum
∑d
k,l=0 b

(m)
kl (n).

Distribution of (X1, ϵ1) from above YW equations.

Recursive scheme:

b
(m)
kl (t+1) = P (Xt+1 | ϵt+1 = sk, ϵt = sl, Xt)P (ϵt+1 = sk)

d∑
j=0

b
(m)
lj (t)

b
(m)
kl (2) = δl,m P (ϵ2 = sk)P (X2 | X1, ϵ2 = sk, ϵ1 = sm).
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Data example: Daily air quality in Beijing in 2018,

taken from Liu et al. (2022b), with d+1 = 6 categories

s0 =“excellent” (E), . . . , s5 =“severely polluted” (SeP).
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AR-like dependence explainable by ordinary DAR model. But

ordinal t.s., WDAR with triangular weighting more reasonable.
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Information criteria for candidate models:

DAR(1) DAR(2) DAR(3) WDAR(1) WDAR(2) WDAR(3)

AIC 1009.3 1004.1 1006.7 958.9 955.4 958.2
BIC 1032.7 1031.4 1037.9 982.3 982.7 989.4

Parameter estimates (s. e.) of relevant WDAR models:

π1 π2 π3 π4 π5 ϕ1 ϕ2

WDAR(1) 0.521 0.194 0.081 0.034 0.018 0.529 —
(0.049) (0.042) (0.026) (0.015) (0.010) (0.051)

WDAR(2) 0.547 0.184 0.070 0.034 0.014 0.502 0.076
(0.056) (0.048) (0.028) (0.016) (0.010) (0.054) (0.044)
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Sample properties & stochastic properties of WDAR fits:

Marginal f0 f1 f2 f3 f4 IOV skew

Data 0.211 0.625 0.847 0.951 0.989 0.471 0.449

WDAR(1) 0.196 0.616 0.833 0.933 0.978 0.494 0.422
WDAR(2) 0.203 0.627 0.841 0.935 0.980 0.488 0.434

Serial κord(1) κord(2) κord(3) κnom(1) κnom(2) κnom(3)

Data 0.354 0.159 0.032 0.221 0.100 -0.024

WDAR(1) 0.361 0.155 0.070 0.208 0.068 0.026
WDAR(2) 0.364 0.200 0.107 0.207 0.095 0.043
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PIT histograms of fitted (a) WDAR(1) model, (b) WDAR(2)

model, and (c) ZOBPAR model:

(a)

fitted WDAR(1) model
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fitted ZOBPAR model
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ZOBPAR model originally proposed by Liu et al. (2022b).

Altogether, both WDAR model perform nearly equally,

more parsimonious WDAR(1) model preferable choice.

Christian H. Weiß — Helmut Schmidt University, Hamburg



Conclusions MATH 

STAT 

• WDARMA models flexibly adapted to

negative serial dependencies or ordinal data.

• Stationary, ergodic, and φ-mixing;

closed-form marginal and bivariate probabilities.

• Efficient implementation of ML estimation,

successfully applied to air quality data.

Future research:

• Approaches for forecasting WDARMA processes.

• Control charts for monitoring WDARMA processes.

Christian H. Weiß — Helmut Schmidt University, Hamburg



Thank You for Your Interest!

MATH 

STAT 

Christian H. Weiß

Department of Mathematics & Statistics

Helmut Schmidt University, Hamburg

weissc@hsu-hh.de

This research was funded by the

Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation),

Projektnummer 516522977.

mailto:weissc@hsu-hh.de


Literature MATH 

STAT 

Weiß & Swidan (2024) Weighted discrete ARMA models for catego-
rical time series. Journal of Time Series Analysis, in press.

(→ open access)

Billingsley (1961) Statistical Inference for Markov Processes. Chicago Press.

Gouveia et al. (2018) A full ARMA model . . . SERRA 32, 2495–2514.

Jacobs & Lewis (1983) Stationary discrete auto. . . JTSA 4, 19–36.

Jentsch & Reichmann (2019) Generalized binary . . . Econometrics 7, 47.

Liu et al. (2022a) Modeling air quality . . . SERRA 36, 2835–2845.

Liu et al. (2022b) Modeling normalcy-dominant . . . JTSA 43, 460–478.

McGee & Harris (2012) Coping with . . . J Prob Stat 2012, 417393.

Möller & Weiß (2020) Generalized discrete ARMA . . . ASMBI 36, 641–659.

Weiß (2018) An Introduction to Discrete-Valued Time Series. Wiley.

Weiß (2020) Distance-based analysis . . . JASA 115, 1189–1200.

Weiß et al. (2019) INARMA modeling . . . Stats 2, 284–320.

Christian H. Weiß — Helmut Schmidt University, Hamburg

https://doi.org/10.1111/jtsa.12773

