Non-Parametric Tests for Spatial Dependence

Helmut schmidT universität

Universität der Bundeswehr Hamburg

Christian H. Weiß

Department of Mathematics & Statistics Helmut Schmidt University, Hamburg

Hee-Young Kim

Department of Bigdata Science Korea University, Sejong, South Korea

Ordinal Patterns in Time Series

Bandt & Pompe (2002) introduced **ordinal patterns** (OPs) as complexity measures for time series characterized by *"simplicity, extremely fast calculation, robustness, and invariance with respect to nonlinear monotonous transformations"*. **Basic idea** in time-series case: map segments $X_t = (X_t, X_{t+1}, ..., X_{t+m-1})$ of length *m* from

continuously distrib., real-valued process $(X_t)_{t \in \mathbb{Z} = \{..., -1, 0, 1, ...\}}$ onto permutations from symmetric group S_m of order m, where selected $\pi_t \in S_m = \{\pi^{[1]}, \ldots, \pi^{[m!]}\}$ expresses order among values in X_t in certain way: (...).

Rank representation, see Berger et al. (2019): Entries of $\pi = (r_1, \ldots, r_m) \in S_m$ express ranks within $x = (x_1, \ldots, x_m) \in \mathbb{R}^m$, i.e., $r_k < r_l \qquad \Leftrightarrow \qquad x_k < x_l \quad \text{or} \quad (x_k = x_l \text{ and } k < l)$ for all $k, l \in \{1, \ldots, m\}$. Here, " $x_k = x_l$ " if ties within x. **Example:** $(1.2, -0.7, 3.4, 1.9) \mapsto (2, 1, 4, 3),$ $(1.2, -0.7, 3.4, -0.7) \mapsto (3, 1, 4, 2).$ **Marginal distribution** of OP series (π_t) provides insights

into serial dependence structure of original process (X_t) .

Focus on *m*!-dimensional **pmf vector** p (or sample pmf \hat{p}), with *k*th component being $p_k = P(\pi_t = \pi^{[k]})$.

Here, order m of OPs (thus dimension m!) chosen by user.

However, range of π_t quickly increases with m as $|S_m| = m!$, so estimation \hat{p} of p quickly difficult in practice.

Therefore, in time series analysis,

convenient choice is m = 3 (Bandt, 2019):

(3,2,1) (3,1,2) (2,3,1) (1,3,2) (2,1,3) (1,2,3)

Let (X_t) be continuously distributed real-valued process, independent and identically distributed (i. i. d.) under null. Probability of ties = 0, so ties at most rarely in data.

Following **properties** crucial for dependence tests:

- 1. OPs invariant w.r.t. strictly monotonically increasing transformations of X_t . Thus, OPs do not depend on actual marginal distribution of $(X_t)_{\mathbb{N}}$ (**distribution-free** approach).
- 2. $(X_t)_{\mathbb{N}}$ is i. i. d. under null (\rightarrow exchangeability). Thus, π_t discrete uniform on S_m , i. e., $P(\pi_t = \pi) = 1/m!$

for each $\pi \in S_m$ (no parameter estimation required).

OP-test statistics built upon \widehat{p} ,

closed-form asymptotics in Weiß (2022),

allow for non-parametric testing of i. i. d.-null.

Here: no time series data, but

spatial data in regular two-dimensional grid,

generated by random field (being i.i.d. under null).

Outline: *spatial* OPs and (refined) 'types'',

possible test statistics and asymptotics,

performance analyses by simulations,

real-data applications.

Testing for Spatial Dependence in Random Fields

Real-valued and continuously distributed **spatial data** occurring in regular two-dimensional grid: $(X_t)_{t \in \mathbb{Z}^2}$. (random field, spatial process in plane, regular lattice structure) Data rectangles $(x_t) = (x_{t_1,t_2})$ with $0 \le t_1 \le m$ and $0 \le t_2 \le n$. Infer dependence in (X_t) via **spatial OPs** (SOPs), due to Ribeiro et al. (2012) and Bandt & Wittfeld (2023). $m_1 \times m_2$ -SOP computed from $m_1 \times m_2$ -rectangle from (x_t) :

- 1. concatenate *rows* into vector of length $m_1 \cdot m_2$,
- 2. compute corresponding $(m_1 \cdot m_2)$ th-order OP from $S_{m_1 \cdot m_2}$,
- 3. transform back into $m_1 \times m_2$ -matrix in *row-wise* manner.

As $|S_{m_1 \cdot m_2}| = (m_1 \cdot m_2)!$ quickly unfeasibly large, Bandt & Wittfeld (2023) recommend focus on 2×2 -**SOPs:**

$$\mathbf{X}_{t} = \begin{pmatrix} X_{t_{1}-1,t_{2}-1} & X_{t_{1}-1,t_{2}} \\ X_{t_{1},t_{2}-1} & X_{t_{1},t_{2}} \end{pmatrix} =: \begin{pmatrix} x_{1} & x_{2} \\ x_{3} & x_{4} \end{pmatrix} \mapsto \begin{pmatrix} r_{1} & r_{2} \\ r_{3} & r_{4} \end{pmatrix},$$

where $(r_{1}, r_{2}, r_{3}, r_{4}) \in S_{4}$ is OP of $(x_{1}, x_{2}, x_{3}, x_{4}).$

Bandt & Wittfeld (2023): further partition into types,

$$\begin{split} & \mathscr{S}_{1} = \left\{ \left(\frac{1}{3}\frac{2}{4}\right), \left(\frac{1}{2}\frac{3}{4}\right), \left(\frac{2}{4}\frac{1}{3}\right), \left(\frac{2}{1}\frac{4}{3}\right), \left(\frac{3}{4}\frac{1}{2}\right), \left(\frac{3}{1}\frac{4}{2}\right), \left(\frac{4}{3}\frac{2}{1}\right), \left(\frac{4}{2}\frac{3}{1}\right) \right\}, \\ & \mathscr{S}_{2} = \left\{ \left(\frac{1}{4}\frac{2}{3}\right), \left(\frac{1}{2}\frac{4}{3}\right), \left(\frac{2}{3}\frac{1}{4}\right), \left(\frac{2}{1}\frac{3}{4}\right), \left(\frac{3}{4}\frac{2}{1}\right), \left(\frac{3}{2}\frac{4}{1}\right), \left(\frac{4}{3}\frac{1}{2}\right), \left(\frac{4}{1}\frac{3}{2}\right) \right\}, \\ & \mathscr{S}_{3} = \left\{ \left(\frac{1}{4}\frac{3}{2}\right), \left(\frac{1}{3}\frac{4}{2}\right), \left(\frac{2}{3}\frac{3}{1}\right), \left(\frac{2}{3}\frac{4}{1}\right), \left(\frac{3}{2}\frac{1}{4}\right), \left(\frac{3}{1}\frac{2}{4}\right), \left(\frac{4}{1}\frac{2}{3}\right), \left(\frac{4}{1}\frac{2}{3}\right) \right\}. \end{split}$$

Visual representation of types

$$\begin{split} s_{1} &= \left\{ \left(\begin{smallmatrix} 1 & 2 \\ 3 & 4 \end{smallmatrix}\right), \left(\begin{smallmatrix} 1 & 3 \\ 2 & 4 \end{smallmatrix}\right), \left(\begin{smallmatrix} 2 & 1 \\ 4 & 3 \end{smallmatrix}\right), \left(\begin{smallmatrix} 2 & 4 \\ 1 & 3 \end{smallmatrix}\right), \left(\begin{smallmatrix} 3 & 1 \\ 4 & 2 \end{smallmatrix}\right), \left(\begin{smallmatrix} 4 & 2 \\ 3 & 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} 4 & 3 \\ 2 & 1 \end{smallmatrix}\right) \right\}, \\ s_{2} &= \left\{ \left(\begin{smallmatrix} 1 & 2 \\ 4 & 3 \end{smallmatrix}\right), \left(\begin{smallmatrix} 1 & 4 \\ 2 & 3 \end{smallmatrix}\right), \left(\begin{smallmatrix} 2 & 1 \\ 3 & 4 \end{smallmatrix}\right), \left(\begin{smallmatrix} 2 & 3 \\ 1 & 4 \end{smallmatrix}\right), \left(\begin{smallmatrix} 3 & 2 \\ 4 & 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} 3 & 4 \\ 2 & 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} 4 & 3 \\ 3 & 2 \end{smallmatrix}\right), \left(\begin{smallmatrix} 4 & 3 \\ 1 & 2 \end{smallmatrix}\right) \right\}, \\ s_{3} &= \left\{ \left(\begin{smallmatrix} 1 & 3 \\ 4 & 2 \end{smallmatrix}\right), \left(\begin{smallmatrix} 1 & 4 \\ 3 & 2 \end{smallmatrix}\right), \left(\begin{smallmatrix} 2 & 3 \\ 4 & 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} 2 & 3 \\ 4 & 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} 3 & 4 \\ 2 & 4 \end{smallmatrix}\right), \left(\begin{smallmatrix} 3 & 4 \\ 3 & 2 \end{smallmatrix}\right), \left(\begin{smallmatrix} 4 & 3 \\ 1 & 2 \end{smallmatrix}\right) \right\}, \end{split}$$

by arrows along increasing rank:

$$S_{1} = \{ \mathbf{Z}, \mathbf{M}, \mathbf{\Sigma}, \mathbf{N}, \mathbf{N}, \mathbf{X}, \mathbf{M}, \mathbf{\Sigma}, \mathbf{M}, \mathbf{\Sigma} \}, \qquad ("Z-type")$$

$$S_{2} = \{ \mathbf{Z}, \mathbf{M}, \mathbf{\Sigma}, \mathbf{N}, \mathbf{N}, \mathbf{\Sigma}, \mathbf{M}, \mathbf{\Sigma} \}, \qquad ("U-type")$$

$$S_{3} = \{ \mathbf{M}, \mathbf{X}, \mathbf{X}, \mathbf{N}, \mathbf{N}, \mathbf{X}, \mathbf{X}, \mathbf{N} \}. \qquad ("X-type")$$

3 types more feasible in small data than 24 SOPs.

Type 1: monotonic behaviour both along rows and columns.

Type 2: uniquely increase/decrease only along one direction.

Type 3: lowest and highest ranks on either main or antidiagonal.

type = rank number which shares diagonal with rank 4.

Example: arthropods data from R-package agridat:

MATH STAT

 p, \hat{p} use lexicographic ordering of SOPs; $p_0 = (\frac{1}{24}, \dots, \frac{1}{24})^{ op}$.

Theorem: (Weiß & Kim, 2024a)
Under i. i. d.-null,
$$\sqrt{mn} \left(\hat{p} - p_0 \right) \stackrel{d}{\rightarrow} N(0, \Sigma_{full})$$

 $\Sigma_{full} = \operatorname{diag}(p_0) - p_0 p_0^\top + \left(\mathbf{D} + \mathbf{D}^\top + \mathbf{A} + \mathbf{A}^\top - 4 p_0 p_0^\top \right)$
 $+ \left(\mathbf{H} + \mathbf{H}^\top - 2 p_0 p_0^\top \right) + \left(\mathbf{V} + \mathbf{V}^\top - 2 p_0 p_0^\top \right).$

Considers different overlaps of 2×2 -SOPs:

Closed-form expression for Σ_{full} from Weiß & Kim (2024a).

Entries of matrix $20160 \cdot \Sigma_{full}$:

	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9	π_{10}	π_{11}	π_{12}	π_{13}	π_{14}	π_{15}	π_{16}	π_{17}	π_{18}	π_{19}	π_{20}	π_{21}	π_{22}	π_{23}	π_{24}
π_1	773	-75	-99	-95	-67	-111	-75	-27	-67	41	-35	-3	-95	-35	-111	-59	181	61	41	-59	-3	-83	61	-59
π_2	-75	645	-67	-175	13	-87	101	-75	-139	-87	-59	29	13	-67	$^{-11}$	13	61	-59	$^{-11}$	-139	-7	-59	181	61
π_3	-99	-67	773	-111	-75	-95	-67	-35	-75	-3	-27	41	-111	181	-95	61	-35	-59	-3	61	41	-59	-59	-83
π_4	-95	-175	-111	685	-87	-107	13	-95	-11	-107	41	-59	157	-111	37	-87	-3	29	37	-11	29	41	-7	-3
π_5	-67	13	-75	-87	645	-175	-139	-59	101	29	-75	-87	$^{-11}$	61	13	-59	-67	13	-7	181	$^{-11}$	61	-139	-59
π_6	-111	-87	-95	-107	-175	685	$^{-11}$	41	13	-59	-95	-107	37	-3	157	29	-111	-87	29	-7	37	-3	$^{-11}$	41
π_7	-75	101	-67	13	-139	$^{-11}$	645	-75	13	$^{-11}$	-59	-7	-175	-67	-87	-139	61	181	-87	13	29	-59	-59	61
π_8	-27	-75	-35	-95	-59	41	-75	773	-59	-111	-83	-3	-95	-99	41	-67	-59	61	-111	-67	-3	-35	61	181
π_9	-67	-139	-75	$^{-11}$	101	13	13	-59	645	-7	-75	$^{-11}$	-87	61	-175	181	-67	-139	29	-59	-87	61	13	-59
π_{10}	41	-87	-3	-107	29	-59	$^{-11}$	-111	-7	685	-3	-107	37	-95	29	-175	41	-87	157	13	37	-95	-11	-111
π_{11}	-35	-59	-27	41	-75	-95	-59	-83	-75	-3	773	-111	41	-59	-95	61	-99	-67	-3	61	-111	181	-67	-35
π_{12}	-3	29	41	-59	-87	-107	-7	-3	-11	-107	-111	685	29	41	37	-87	-95	-175	37	$^{-11}$	157	-111	13	-95
π_{13}	-95	13	-111	157	-11	37	-175	-95	-87	37	41	29	685	-111	-107	-11	-3	-7	-107	-87	-59	41	29	-3
π_{14}	-35	-67	181	-111	61	-3	-67	-99	61	-95	-59	41	-111	773	-3	-75	-83	-59	-95	-75	41	-27	-59	-35
π_{15}	-111	-11	-95	37	13	157	-87	41	-175	29	-95	37	-107	-3	685	-7	-111	-11	-59	29	-107	-3	-87	41
π_{16}	-59	13	61	-87	-59	29	-139	-67	181	-175	61	-87	-11	-75	-7	645	-59	13	13	101	-11	-75	-139	-67
π_{17}	181	61	-35	-3	-67	-111	61	-59	-67	41	-99	-95	-3	-83	-111	-59	773	-75	41	-59	-95	-35	-75	-27
π_{18}	61	-59	-59	29	13	-87	181	61	-139	-87	-67	-175	-7	-59	-11	13	-75	645	-11	-139	13	-67	101	-75
π_{19}	41	-11	-3	37	-7	29	-87	-111	29	157	-3	37	-107	-95	-59	13	41	-11	685	-175	-107	-95	-87	-111
π_{20}	-59	-139	61	-11	181	-7	13	-67	-59	13	61	-11	-87	-75	29	101	-59	-139	-175	645	-87	-75	13	-67
π_{21}	-3	-7	41	29	-11	37	29	-3	-87	37	-111	157	-59	41	-107	-11	-95	13	-107	-87	685	-111	-175	-95
π_{22}	-83	-59	-59	41	61	-3	-59	-35	61	-95	181	-111	41	-27	-3	-75	-35	-67	-95	-75	-111	773	-67	-99
π_{23}	61	181	-59	-7	-139	-11	-59	61	13	-11	-67	13	29	-59	-87	-139	-75	101	-87	13	-175	-67	645	-75
π_{24}	-59	61	-83	-3	-59	41	61	181	-59	-111	-35	-95	-3	-35	41	-67	-27	-75	-111	-67	-95	-99	-75	773

with

By above Theorem, derive asymptotics of any aggregation.

Concerning types, define transformation matrix

$$\mathbf{T}_{\text{types}} \in \{0,1\}^{3 \times 24}$$
 as 1 iff j^{th} SOP of type i ,

and 0 otherwise.

Corollary: (Bandt & Wittfeld, 2023)

Under i. i. d.-null, asymptotic covariance of type frequencies

$$\Sigma_{\text{types}} = \mathbf{T}_{\text{types}} \Sigma_{\text{full}} \mathbf{T}_{\text{types}}^{\top} = \frac{1}{45} \begin{pmatrix} 11 & -5 & -6 \\ -5 & 11 & -6 \\ -6 & -6 & 12 \end{pmatrix},$$

non-zero eigenvalues $\frac{2}{5}$ and $\frac{16}{45}$.

Bandt & Wittfeld (2023) proposed following type statistics:

$$\hat{\tau} = \hat{p}_1 - 1/3$$
 and $\hat{\kappa} = \hat{p}_2 - \hat{p}_3$,
 $\tilde{\tau} = \hat{p}_3 - 1/3$ and $\tilde{\kappa} = \hat{p}_1 - \hat{p}_2$.

Corollary: Under i. i. d.-null, $\sqrt{mn} (\hat{\tau}, \hat{\kappa}) \stackrel{d}{\rightarrow} N(0, \Sigma') \text{ and } \sqrt{mn} (\tilde{\tau}, \tilde{\kappa}) \stackrel{d}{\rightarrow} N(0, \Sigma''), \text{ where}$ $\Sigma' = \frac{1}{45} \begin{pmatrix} 11 & 1\\ 1 & 35 \end{pmatrix}, \qquad \Sigma'' = \frac{4}{45} \begin{pmatrix} 3 & 0\\ 0 & 8 \end{pmatrix}.$

 $\Rightarrow \text{ four non-parametric tests for spatial dependence:}$ $\hat{\tau}$ -test, $\hat{\kappa}$ -test, $\tilde{\tau}$ -test, $\tilde{\kappa}$ -test.

Performance analyses in Weiß & Kim (2024a):

While spatial ACF superior for *linear unilateral* DGPs, SOP-based tests often superior in presence of *outliers*, for *non-linear* DGPs, and for *bilateral* spatial DGPs.

$\tilde{\tau}$ -test outperforms all other type-tests!

However, types imply a three-part partition $S_1 \cup S_2 \cup S_3$. Reducing real-valued spatial data set to three types only, may lose information for uncovering spatial dependence.

⇒ Develop "**refined types**" to preserve more information!

Testing for Spatial Dependence in Random Fields

1st refinement $S_i = S_{i,1} \cup S_{i,2}$ in Weiß & Kim (2024b): rotation types (invariant w.r.t. rotation)

$$\begin{split} &\mathcal{S}_{1.1} = \left\{ \pi_1, \pi_{11}, \pi_{14}, \pi_{24} \right\} = \left\{ \mathbf{Z}, \mathbf{N}, \mathbf{N}, \mathbf{Z} \right\}, \\ &\mathcal{S}_{1.2} = \left\{ \pi_3, \pi_8, \pi_{17}, \pi_{22} \right\} = \left\{ \mathbf{M}, \mathbf{\Sigma}, \mathbf{X}, \mathbf{M} \right\}, \\ &\mathcal{S}_{2.1} = \left\{ \pi_2, \pi_9, \pi_{18}, \pi_{20} \right\} = \left\{ \mathbf{Q}, \mathbf{Q}, \mathbf{C}, \mathbf{M} \right\}, \\ &\mathcal{S}_{2.2} = \left\{ \pi_5, \pi_7, \pi_{16}, \pi_{23} \right\} = \left\{ \mathbf{L}, \mathbf{Q}, \mathbf{C}, \mathbf{M} \right\}, \\ &\mathcal{S}_{3.1} = \left\{ \pi_4, \pi_{12}, \pi_{15}, \pi_{19} \right\} = \left\{ \mathbf{M}, \mathbf{K}, \mathbf{X}, \mathbf{K} \right\}, \\ &\mathcal{S}_{3.2} = \left\{ \pi_6, \pi_{10}, \pi_{13}, \pi_{21} \right\} = \left\{ \mathbf{X}, \mathbf{K}, \mathbf{K}, \mathbf{K} \right\}. \end{split}$$

1st refinement $S_i = S_{i,1} \cup S_{i,2}$ in Weiß & Kim (2024b): rotation types.

Corollary: Under i. i. d.-null,

asymptotic covariance of rotation-type frequencies

$$\Sigma_{\text{rot}} = \mathbf{T}_{\text{rot}} \Sigma_{\text{full}} \mathbf{T}_{\text{rot}}^{\top} = \frac{1}{180} \begin{pmatrix} 23 & -1 & -5 & -5 & -6 & -6 \\ -1 & 23 & -5 & -5 & -6 & -6 \\ -5 & -5 & 11 & 11 & -6 & -6 \\ -5 & -5 & 11 & 11 & -6 & -6 \\ -6 & -6 & -6 & -6 & 25 & -1 \\ -6 & -6 & -6 & -6 & -1 & 25 \end{pmatrix},$$

with non-zero eigenvalues $\frac{1}{5}$, $\frac{8}{45}$, $\frac{13}{90}$, and $\frac{2}{15}$.

2nd refinement $S_i = S_{i,1} \cup S_{i,2}$ in Weiß & Kim (2024b):

direction types (w.r.t. positions of maximal ranks)

$$\begin{split} \delta_{1.1} &= \left\{ \pi_1, \pi_8, \pi_{17}, \pi_{24} \right\} &= \left\{ \left(\frac{1}{3} \frac{2}{4} \right), \left(\frac{2}{4} \frac{1}{3} \right), \left(\frac{3}{4} \frac{2}{2} \right), \left(\frac{4}{2} \frac{3}{1} \right) \right\}, \\ \delta_{1.2} &= \left\{ \pi_3, \pi_{11}, \pi_{14}, \pi_{22} \right\} &= \left\{ \left(\frac{1}{2} \frac{3}{4} \right), \left(\frac{2}{1} \frac{4}{3} \right), \left(\frac{3}{4} \frac{1}{2} \right), \left(\frac{4}{3} \frac{2}{1} \right) \right\}, \\ \delta_{2.1} &= \left\{ \pi_2, \pi_7, \pi_{18}, \pi_{23} \right\} &= \left\{ \left(\frac{1}{4} \frac{2}{3} \right), \left(\frac{2}{3} \frac{1}{4} \right), \left(\frac{3}{2} \frac{4}{1} \right), \left(\frac{4}{3} \frac{3}{2} \right) \right\}, \\ \delta_{2.2} &= \left\{ \pi_5, \pi_9, \pi_{16}, \pi_{20} \right\} &= \left\{ \left(\frac{1}{2} \frac{3}{3} \right), \left(\frac{2}{3} \frac{3}{4} \right), \left(\frac{3}{4} \frac{2}{1} \right), \left(\frac{4}{3} \frac{1}{2} \right) \right\}, \\ \delta_{3.1} &= \left\{ \pi_4, \pi_6, \pi_{10}, \pi_{12} \right\} &= \left\{ \left(\frac{1}{4} \frac{3}{2} \right), \left(\frac{1}{3} \frac{4}{2} \right), \left(\frac{2}{4} \frac{3}{1} \right), \left(\frac{2}{3} \frac{4}{1} \right) \right\}, \\ \delta_{3.2} &= \left\{ \pi_{13}, \pi_{15}, \pi_{19}, \pi_{21} \right\} &= \left\{ \left(\frac{3}{2} \frac{1}{4} \right), \left(\frac{3}{2} \frac{2}{4} \right), \left(\frac{4}{2} \frac{2}{3} \right), \left(\frac{4}{1} \frac{2}{3} \right) \right\}. \end{split}$$

,

2nd refinement $S_i = S_{i,1} \cup S_{i,2}$ in Weiß & Kim (2024b): direction types.

Corollary: Under i. i. d.-null,

asymptotic covariance of direction-type frequencies

$$\Sigma_{\text{dir}} = \mathbf{T}_{\text{dir}} \Sigma_{\text{full}} \mathbf{T}_{\text{dir}}^{\top} = \frac{1}{1260} \begin{pmatrix} 217 & -63 & -7 & -63 & -42 & -42 \\ -63 & 217 & -63 & -7 & -42 & -42 \\ -7 & -63 & 217 & -63 & -42 & -42 \\ -63 & -7 & -63 & 217 & -42 & -42 \\ -42 & -42 & -42 & -42 & 103 & 65 \\ -42 & -42 & -42 & -42 & -42 & 65 & 103 \end{pmatrix}$$

with non-zero eigenvalues $\frac{4}{15}$, $\frac{1}{5}$, $\frac{8}{45}$ (twice), and $\frac{19}{630}$.

3rd refinement $S_i = S_{i,1} \cup S_{i,2}$ in Weiß & Kim (2024b): diagonal types (w.r.t. diagonal with rank 4)

 $\mathcal{S}_{1.1} = \{ \pi_1, \pi_3, \pi_{22}, \pi_{24} \} = \{ \begin{pmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{3} & \mathbf{4} \end{pmatrix}, \begin{pmatrix} \mathbf{1} & \mathbf{3} \\ \mathbf{2} & \mathbf{4} \end{pmatrix}, \begin{pmatrix} \mathbf{4} & \mathbf{2} \\ \mathbf{3} & \mathbf{1} \end{pmatrix}, \begin{pmatrix} \mathbf{4} & \mathbf{3} \\ \mathbf{2} & \mathbf{1} \end{pmatrix} \},$ $\mathcal{S}_{1.2} = \{ \pi_8, \pi_{11}, \pi_{14}, \pi_{17} \} = \{ \begin{pmatrix} 2 & \mathbf{1} \\ \mathbf{4} & \mathbf{3} \end{pmatrix}, \begin{pmatrix} 2 & \mathbf{4} \\ \mathbf{1} & \mathbf{3} \end{pmatrix}, \begin{pmatrix} 3 & \mathbf{1} \\ \mathbf{4} & \mathbf{2} \end{pmatrix}, \begin{pmatrix} 3 & \mathbf{4} \\ \mathbf{1} & \mathbf{2} \end{pmatrix} \},$ $\mathcal{S}_{2.1} = \{\pi_7, \pi_9, \pi_{20}, \pi_{23}\} = \{(\begin{array}{c}2\\3\\4\end{array}), (\begin{array}{c}2\\1\\4\end{array}), (\begin{array}{c}4\\3\\2\end{array}), (\begin{array}{c}4\\3\\2\end{array}), (\begin{array}{c}4\\1\\2\end{array})\},$ $\mathcal{S}_{2.2} = \{ \pi_2, \pi_5, \pi_{16}, \pi_{18} \} = \{ \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix} \},$ $\mathcal{S}_{3.1} = \{\pi_{13}, \pi_{15}, \pi_{19}, \pi_{21}\} = \{ \begin{pmatrix} \mathbf{3} & \mathbf{1} \\ 2 & \mathbf{4} \end{pmatrix}, \begin{pmatrix} \mathbf{3} & \mathbf{2} \\ 1 & \mathbf{4} \end{pmatrix}, \begin{pmatrix} \mathbf{4} & \mathbf{1} \\ 2 & \mathbf{3} \end{pmatrix}, \begin{pmatrix} \mathbf{4} & \mathbf{2} \\ 1 & \mathbf{3} \end{pmatrix} \},\$ $\mathcal{S}_{3.2} = \{\pi_4, \pi_6, \pi_{10}, \pi_{12}\} = \{(\begin{smallmatrix} 1 & 3 \\ 4 & 2 \end{smallmatrix}), (\begin{smallmatrix} 1 & 4 \\ 3 & 2 \end{smallmatrix}), (\begin{smallmatrix} 2 & 3 \\ 4 & 1 \end{smallmatrix}), (\begin{smallmatrix} 2 & 4 \\ 3 & 1 \end{smallmatrix})\},\$

3rd refinement $S_i = S_{i,1} \cup S_{i,2}$ in Weiß & Kim (2024b): diagonal types.

Corollary: Under i. i. d.-null,

asymptotic covariance of diagonal-type frequencies

$$\Sigma_{\text{diag}} = \dots = rac{1}{1260} egin{pmatrix} 133 & 21 & -35 & -35 & -42 & -42 \ 21 & 133 & -35 & -35 & -42 & -42 \ -35 & -35 & 153 & 1 & -80 & -4 \ -35 & -35 & 1 & 153 & -4 & -80 \ -42 & -42 & -80 & -4 & 103 & 65 \ -42 & -42 & -4 & -80 & 65 & 103 \ \end{pmatrix},$$

with non-zero eigenvalues $\frac{1}{5}$, $\frac{8}{45}$, $\frac{19}{126}$, and $\frac{4}{45}$.

Test statistics: Like in Bandt (2019); Weiß (2022),

we use entropy, extropy, and distance to white noise, $\widehat{H} := H(\widehat{p}) = -\sum_{k=1}^{q} \widehat{p}_k \ln \widehat{p}_k,$

$$\widehat{H}_{ex} := H_{ex}(\widehat{p}) = -\sum_{k=1}^{q} (1 - \widehat{p}_k) \ln(1 - \widehat{p}_k),$$
$$\widehat{\Delta} := \Delta(\widehat{p}) = \sum_{k=1}^{q} (\widehat{p}_k - 1/q)^2.$$

Adapting Theorem 2.1 in Weiß (2022),

 $mn\,\widehat{\Delta}, \quad -mn\,\frac{2}{q}\left(\widehat{H}-\ln q\right), \quad -2mn\,(1-\frac{1}{q})\left(\widehat{H}_{\mathsf{ex}}-(q-1)\,\ln\left(\frac{q}{q-1}\right)\right)$

asymptotically distributed like

$$\sum_{i=1}^{l} \lambda_i \cdot \chi_{r_i}^2,$$

where $\lambda_1, \ldots, \lambda_l$ non-zero eigenvalues of Σ .

MATH STAT

Corollary in Weiß & Kim (2024b): For ordinary types,

$$mn\,\widehat{\Delta}, \quad -\frac{2}{3}\,mn\left(\widehat{H} - \ln 3\right), \quad -\frac{4}{3}\,mn\left(\widehat{H}_{\mathsf{ex}} - 2\,\ln\left(\frac{3}{2}\right)\right)$$

asymptotically distributed like $\frac{2}{5}\chi_1^2 + \frac{16}{45}\chi_1^2$.

For refined types, asymptotic distribution of

$$mn\,\widehat{\Delta}, \quad -\frac{1}{3}\,mn\left(\widehat{H}-\ln 6\right), \quad -\frac{10}{6}\,mn\left(\widehat{H}_{ex}-5\,\ln\left(\frac{6}{5}\right)\right)$$

is $\frac{1}{5}\chi_1^2 + \frac{8}{45}\chi_1^2 + \frac{13}{90}\chi_1^2 + \frac{2}{15}\chi_1^2$ if rotation types, $\frac{4}{15}\chi_1^2 + \frac{1}{5}\chi_1^2 + \frac{8}{45}\chi_2^2 + \frac{19}{630}\chi_1^2$ if direction types, $\frac{1}{5}\chi_1^2 + \frac{8}{45}\chi_1^2 + \frac{19}{126}\chi_1^2 + \frac{4}{45}\chi_1^2$ if diagonal types.

Critical values for non-parametric entropy-like tests

via R package CompQuadForm.

Important $(1 - \alpha)$ -quantiles of quadratic-form distributions:

lpha	Ordinary	Rotation	Direction	Diagonal
0.10	1.740201	1.279915	1.637740	1.216170
0.05	2.265401	1.566739	1.999264	1.497222
0.01	3.487299	2.210104	2.813519	2.133017

Testing for Spatial Dependence in Random Fields

Performance analyses by simulations in Weiß & Kim (2024b).

For power analyses, various unilateral and bilateral spatial DGPs:

Unilateral:Bishop:Rook: $(t_1 - 1, t_2 - 1)$ $(t_1 - 1, t_2 - 1)$ $(t_1 - 1, t_2 + 1)$ $(t_1 - 1, t_2)$ \searrow \downarrow \checkmark \checkmark \checkmark $(t_1, t_2 - 1)$ (t_1, t_2) (t_1, t_2) (t_1, t_2) $(t_1 + 1, t_2 - 1)$ $(t_1 + 1, t_2 + 1)$ $(t_1, t_2 - 1)$ (t_1, t_2) $(t_1 + 1, t_2 - 1)$ $(t_1 + 1, t_2 + 1)$ $(t_1 + 1, t_2)$

Brief summary:

- Size: all tests hold nominal level sufficiently well.
- $\tilde{\tau}$ -test excellent choice for uncovering spatial dependence, but in many cases, further improvements by appropriate form of refined type. (...)

Brief summary:

- For unilateral DGPs, diagonal types superior in most cases.
- For bilateral DGPs, $\tilde{\tau}$ -test often superior.
- For bil. DGPs with Rook structure, direction types superior.
- If refined types superior, then extropy most powerful.

Weiß & Kim (2024b): two real-world data examples, yield of barley (in kg) in 28×7 -grid (m = 27, n = 6) from uniformity trial experiment (Kempton & Howes, 1981); population change in Turku region between 2005 and 2022 in $1 \text{ km} \times 1 \text{ km}$ grid (m = 11, n = 8), see Statistics Finland.

Yield of barley: all tests reject i. i. d.-null (P-values $\approx 10^{-9}$). Particularly large extropy value for direction types, mainly $\delta_{1,2}$ (32.1%) and $\delta_{2,2}$ (36.4%) \Rightarrow "dominant columns".

 $S_{1,2} = \left\{ \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}, \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix}, \begin{pmatrix} 4 & 2 \\ 3 & 1 \end{pmatrix} \right\}, \qquad S_{2,2} = \left\{ \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}, \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \right\}.$

Kempton & Howes (1981): "sowing, harvesting and all interme-

diate farming practices were carried out column by column".

Population change: extremely large value at t = (7,3), but SOPs robust against outliers (by contrast to spatial ACF). Only diagonal types reject (extropy's P-value 0.008), mainly $\delta_{1.2}$ (21.6%) and $\delta_{2.2}$ (27.3%) \Rightarrow "dominant antidiagonal". $\delta_{1.2} = \left\{ \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 4 & 3 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 4 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 4 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 4 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 4 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 4 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 4 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 4 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \\ 4$

SOPs and (refined) types well-interpretable and robust.

If data continuously distributed, then non-parametric tests.

Easily implemented in practice due to closed-form asymptotics.

Direction and diagonal types advantageous for unilateral and

certain bilateral DGPs, where extropy statistic most powerful.

Work in progress & future research:

- Control charts based on SOPs and (refined) types, in analogy to Weiß & Testik (2023);
- SOPs based on "generalized OPs" where ties explicitly accounted for, in analogy to Weiß & Schnurr (2024).

Thank You for Your Interest!

Christian H. Weiß

Department of Mathematics & Statistics

Helmut Schmidt University, Hamburg

weissc@hsu-hh.de

MATH STAT

Weiß & Kim (2024a) Using spatial ordinal patterns for nonparametric testing of spatial dependence. *Spatial Statistics* 59, 100800.

Weiß & Kim (2024b) Non-parametric entropy tests for spatial dependence. *Manuscript*, submitted.

Bandt (2019) Small order patterns in big time series ... Entropy 21, 613.
Bandt & Pompe (2002) Permutation entropy ... Phys Rev L 88, 174102.
Bandt & Wittfeld (2023) Two new parameters ... Chaos 33, 043124.
Berger et al. (2019) Teaching ordinal patterns ... Entropy 21, 1023.
Kempton & Howes (1981) The use of neighbouring ... JRSS-C 30, 59–70.
Ribeiro et al. (2012) Complexity-entropy ... PLoS ONE 7, e40689.
Weiß (2022) Non-parametric tests for serial dep... Chaos 32, 093107.
Weiß & Schnurr (2024) Generalized OPs ... J Nonpar Stat 36, 573–599.
Weiß & Testik (2023) Non-param. control ch... Technomet 65, 340–350.