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X categorical r.v. if X bounded qualitative range,

say S = {s0, s1, . . . , sd} with some d ∈ N = {1,2, . . .}.

Such r.v. called ordinal if S exhibits natural order

among the categories, say s0 < . . . < sd (Agresti, 2010).

For modeling ordinal r.v., one may link X to some

real-valued latent variable Q with cdf FQ: (→ GLMs)

X = sj iff Q ∈ [ηj−1; ηj),

where −∞ = η−1 < η0 < . . . < ηd−1 < ηd = +∞ such that

pj = P (X = sj) = FQ(ηj)− FQ(ηj−1) and

fj = P (X ≤ sj) = FQ(ηj) hold for j = 0, . . . , d.
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Hidden-Markov model (HMM) for (Xt, Ht),

where observations Xt have ordinal range S, and

hidden states Ht have range H = {0, . . . , dH} with dH ∈ N:

(i) observation equation

P (Xt = x|Xt−1, . . . , Ht = h,Ht−1, . . .) = P (Xt = x|Ht = h) = p(x|h),

(ii) state equation

P (Ht|Xt−1, . . . , Ht−1, . . .) = P (Ht|Ht−1, . . .),

(iii) Markov assumption (transition matrix A = (ah|i)h,i∈H)

P (Ht = h|Ht−1 = i,Ht−2, . . .) = P (Ht = h|Ht−1 = i) = ah|i.
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If π0 of H0 as π0 := π satisfying Aπ = π,

then HMM (Xt, Ht) becomes stationary.

Categorical HMMs discussed so far (Weiß, 2018)

are indeed HMMs for nominal (Xt),

i. e., assume no relations among states in S.

⇒ the dH +1 different state-dependent distributions p(·|h)

have d parameters each, so altogether

dH (dH +1)+ d (dH +1) = (dH + d) (dH +1) parameters.

Such fully non-parametric specification of discrete HMM

also considered by Turner (2022) in “hmm.discnp”.
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Here: ordinal range S, so order relation among states.

To account for ordinal nature of Xt,

and reduce number of parameters at same time,

we combine categorical HMM with latent-variable approach.

Ordinal HMM:

Let Q
(h)
t latent variable emitted at time t if Ht = h,

with corresponding state-dependent cdf FQ,h.

Given state-independent parameters

−∞ = η−1 < η0 < . . . < ηd−1 < ηd = +∞, emission of Xt via

Xt = sj | Ht = h iff Q
(h)
t ∈ [ηj−1; ηj).
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Specific examples: (dH (dH +1) + d+ dH parameters)

• logit(µ) HMM: Q
(h)
t ∼ L(µh,1) with µ0 := 0 and

FQ,h(x) = FQ(x− µh), where FQ(u) = 1/
(
1+ exp (−u)

)
;

• soft-clipping(µ) HMM: Q
(h)
t ∼ µh + U(0,1) + L(0, δ)

with µ0 := 0 and FQ,h(x) = FQ(x− µh), where

FQ(u) = scδ(u) := min
{
1,max{0, u}

}
+ δ ln

(
1+ exp(−|uδ |)

1 + exp(−|1−u
δ |)

)
;

• logit(σ) HMM: Q
(h)
t ∼ L(0, σh) with σ0 := 1 and

FQ,h(x) = FQ(x/σh), where FQ(u) = 1/
(
1+ exp (−u)

)
.
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Marginal and bivariate pmf via (Zucchini et al., 2016)

P (Xt = x) = 1⊤P(x)π and

P (Xt = x,Xt−k = y) = 1⊤P(x)Ak P(y)π,

where P(x) := diag
(
p(x|0), . . . , p(x|dH)

)
for x ∈ S.

⇒ Location via median, dispersion via IOV = 4
d

d−1∑
i=0

fi(1− fi),

(a)symmetry via skew = 2
d

d−1∑
i=0

fi − 1,

and serial dependence via (Weiß, 2020)

κord(k) =

d−1∑
j=0

(
fjj(k)− f2j

)
d−1∑
i=0

fi(1− fi)
, fij(k) = P (Xt ≤ si, Xt−k ≤ sj).
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2-state logit(µ) HMM with range S = {s0, . . . , s4},

A =
(
0.97 0.07
0.03 0.93

)
, η = (0,1,2,3)⊤, µ1 = µ > 0 (µ1 = 3):
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2-state soft-clipping(µ) HMM with S = {s0, . . . , s4},

A =
(
0.97 0.07
0.03 0.93

)
, η = (0.5,0.7,0.85,0.95)⊤,

µ ∈ (0; 1) (µ = 0.45), and δ = 0.01 (≈ piecewise linear):
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2-state logit(σ) HMM with range S = {s0, . . . , s4},

A =
(
0.97 0.07
0.03 0.93

)
, η = (−1.5,−0.5,1,2)⊤, σ ∈ (1; 7) (σ = 3):
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Direct maximization of log-likelihood feasible, see Bulla &

Berzel (2008), MacDonald (2014), Zucchini et al. (2016):

compute forward probabilities αt = (αt,0, . . . , αt,dH)
⊤ with

αt,h = P (Xt = xt, . . . , X1 = x1, Ht = h)

recursively via

α1 = P(x1)π, αt = P(xt)Aαt−1, L(θ) = 1⊤αn.

Also useful for forecasting:

P (Xt+k = x | xt, . . . , x1) =
1⊤P(x)Akαt

1⊤αt
.
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Performance analysis via simulations, illustrative boxplots:
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2-state logit(µ) HMM with a12 = 0.07, a21 = 0.03,

and with η = (0,1,2,3)⊤ and µ1 = 3.
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Performance analysis via simulations, illustrative boxplots:
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2-state soft-clipping(µ) HMM with a12 = 0.07, a21 = 0.03,

and with η = (0.5,0.7,0.85,0.95)⊤ and µ1 = 0.45.
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• Further simulation scenarios in Weiß & Swidan (2024).

• Certainly, worse estimation performance for 3-state HMMs,

with 12 instead of 7 parameters.

But reasonably well already for n = 250.

• Only problematic of aij very close to zero.

But well known for HMMs “when one fits models with three

or more states to relatively short series”, namely “that the

estimates of one or more of the transition probabilities turn

out to be very close to zero” (Zucchini et al., 2016, p. 55).
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Data made available by Curelator Inc., who developed

mobile app “N1-Headache™ ” for use by migraine patients.

Each day, users asked “to log information about [their] head-

aches, migraine symptoms and medication use on days [they]

have an attack, and track a range of factors (moods, weather,

diet, etc.) on a daily basis that may influence [their] risk of

attack” (https://n1-headache.com/patients/faq/).

The authors are very grateful to Curelator Inc. (https://n1-headache.com/)

for providing the N1-Headache™ data, and to Dr. M. Vives-Mestres and Dr.

A. Casanova for their support and for fruitful discussions about these data.
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We focus on one of monitored emotional features:

level of perceived stress, also see Weiß (2021).

“How stressed have you felt today?” — expressed on 0–10 Likert

scale, ranging from “not at all” to “a lot”.

Stress is known trigger of migraine attacks and also associates

with severity of attack (Vives-Mestres et al., 2021).

Illustrative example: daily stress level of a migraine patient

on n = 354 successive days,

levels 4–10 aggregated into (maximal) category s4.
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Competitors for model fitting:

discrete autoregressive (DAR) models (Weiß, 2018, Sec. 7.2),

fully non-parametric HMMs from “hmm.discnp” (Turner, 2022).

Fitted 2-state logit(µ) HMM:

Â ≈
(
0.828 0.283
0.172 0.717

)
η̂ ≈ (−1.356,0.279,9.393,11.507)⊤,

µ̂1 ≈ 9.505, leading to state-dependent distributions

p(x|0) ≈ 0.205,0.364,0.431,0.000,0.000,

p(x|1) ≈ 0.000,0.000,0.472,0.409,0.119,
for x = s0, . . . , s4.

Stationary marginal distribution of Ht: (0.622,0.378)⊤.

AIC ≈ 954.0 and BIC ≈ 981.1 clearly outperform DAR models.
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Full 2-state HMM has nearly same stochastic properties,

but 10 instead of 7 parameters and

hence worse AIC ≈ 959.7 and BIC ≈ 998.4.

Fitting 2-state soft-clipping(µ) HMM with δ = 0.01 leads to

virtually identical model, so user may decide by practical aspects.

3-state logit(µ) HMM with refined states:

p(x|0) ≈ 0.243,0.435,0.322,0.000,0.000 with median s1,

p(x|1) ≈ 0.000,0.000,0.694,0.304,0.002 with median s2,

p(x|2) ≈ 0.000,0.000,0.003,0.423,0.575 with median s4.

Improved AIC ≈ 946.7, worse BIC ≈ 993.2.
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Global decoding using 2 (diamonds) or 3 states (squares):
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Checks of model adequacy slightly prefer 3-state HMM.
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Only deficiency: data exhibit (mild) weekly seasonal pattern,

also see dominant lag 7 in plot of κord(k).

Weekly seasonality for perceived stress plausible, e. g.,

with tendency to higher stress levels during working days.

Feasible solution (Zucchini et al., 2016, Section 10.2.1):

include covariates into state-dependent distributions (→ GLM).

ML estimation still possible by forward approach,

just use time-dependent Pt(·) where

ft(sj|h) = P (Xt ≤ sj | Ht = h, zt) = FQ,h(ηj + γ⊤ zt).
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For perceived stress data, we use harmonic component

ft(sj|h) = FQ,h

(
ηj + a cos(2π7 t) + b sin(2π7 t)

)
.

Similar ML estimates for A, η, and µ as before,

but (â, b̂) ≈ (−0.013,−1.200) for 2-state HMM,

and (â, b̂) ≈ (0.043,−1.277) for 3-state HMM.

Considerable improvement of information criteria:

AIC ≈ 917.8 and BIC ≈ 952.7 for 2-state HMM,

and AIC ≈ 908.7 and BIC ≈ 962.9 for 3-state HMM.

Also very good adequacy checks (PIT histogram, etc.).
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• Novel class of HMMs for ordinal time series,

help to understand their structure and behavior,

more parsimonious than ordinary categorical HMMs.

• Stochastic properties, ML estimation,

various special cases for incorporated GLM structure.

• Successfully applied to perceived stress time series,

extension to non-stationary ordinal HMM.

Future research:

• Forecasting ordinal HMMs, effect of parameter estimation;

• control charts for monitoring ordinal HMMs.
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