Testing for Serial Dependence by Using Ordinal Patterns

Universität der Bundeswehr Hamburg

Christian H. Weiß

Department of Mathematics & Statistics, Helmut Schmidt University, Hamburg

Alexander Schnurr

Department of Mathematics, University of Siegen

Ordinal Patterns in Continuously-distributed Real-valued Time Series

Introduction

Ordinal pattern (OP) introduced by Bandt & Pompe (2002).

Basic idea: map segments $\boldsymbol{X}_{t}=(X_{t},X_{t+1},\ldots,X_{t+m-1})$ of length m from continuously distrib., real-valued process $(X_t)_{t\in\mathbb{Z}=\{...,-1,0,1,...\}}$ onto permutations from symmetric group S_m of order m, where selected $\pi_t \in S_m = \{ \pi^{[1]}, \ldots, \pi^{[m!]} \}$ expresses order among values in \boldsymbol{X}_t in certain way: $(\dots).$

Rank representation, see Berger et al. (2019): Entries of $\pi = (r_1, \ldots, r_m) \in S_m$ express ranks within $x = (x_1, \ldots, x_m) \in \mathbb{R}^m$, i.e., $r_k < r_l$ \Leftrightarrow $x_k < x_l$ or $(x_k = x_l \text{ and } k < l)$ for all $k, l \in \{1, \ldots, m\}$. Here, " $x_k = x_l$ " if ties within \boldsymbol{x} . Example: $(1.2, -0.7, 3.4, 1.9)$ \mapsto $(2, 1, 4, 3),$ $(1.2, -0.7, 3.4, -0.7)$ \mapsto $(3, 1, 4, 2).$ **Marginal distribution** of OP series (π_t) provides insights

into serial dependence structure of original process (X_t) .

Focus on m!-dimensional **pmf vector** p (or sample pmf \hat{p}), with k th component being $p_k = P(\pi_t = \pi^{[k]})$.

Here, order m of OPs (thus dimension $m!$) chosen by user. However, range of π_t quickly increases with m as $|S_m| = m!$, so estimation \hat{p} of p quickly difficult in practice.

If $m = 2$: only downward OP $(2, 1)$ and upward OP $(1, 2)$.

Convenient choice is $m = 3$ (Bandt, 2019):

$$
(3,2,1) (3,1,2) (2,3,1) (1,3,2) (2,1,3) (1,2,3)
$$

Testing for Serial Dependence in Continuously-distributed Real-valued Time Series

Approaches & Asymptotics

Let (X_t) be continuously distributed real-valued process, independent and identically distributed (i.i.d.) under null. Probability of ties $= 0$, so ties at most rarely in data.

Following **properties** crucial for dependence tests:

- 1. OPs invariant w.r.t. strictly monotonically increasing transformations of X_t . Thus, OPs do not depend on actual marginal distribution of $(X_t)_N$ (distribution-free approach).
- 2. $(X_t)_\mathbb{N}$ is i. i. d. under null (\rightarrow exchangeability). Thus, π_t discrete uniform on S_m , i.e., $P\big(\pi_t = \pi\big) = 1/m!$ for each $\pi \in S_m$ (no parameter estimation required).

OP-test statistics built upon \hat{p} computed from π_1, \ldots, π_n with $n \in \mathbb{N} = \{1, 2, ...\}$, where π_t from $\bm{X}_t = (X_t, X_{t+1}, \dots, X_{t+m-1})$ for $t = 1, 2, \ldots, n$ (moving-window approach).

First, asymptotics of $\sqrt{n}\left(\widehat{\bm{p}}-\bm{p}_0\right)$ under i. i. d.-null required, where $p_0 = (1/m!, \ldots, 1/m!)$.

Note: moving-window for (π_t) causes $(m-1)$ -dependence! Elsinger (2010), Weiß (2022): $\sqrt{n}(\hat{p}-p_0) \rightarrow N(0,\Sigma_m)$, where Σ_m computed explicitly by combinatorial arguments.

Then, distribution of OP-test statistics

by Taylor approximations ("Delta method").

.

Asymptotics
$$
\sqrt{n} (\hat{p} - p_0) \rightarrow N(0, \Sigma_m)
$$

 $\Sigma_m = (\sigma_{ij})_{i,j=1,...,m!}$ given by

$$
\sigma_{ij} = 1/m! \left(\delta_{ij} - 1/m! \right) + \sum_{h=1}^{m-1} \left(p_{ij}(h) + p_{ji}(h) - 2/m!^2 \right).
$$

Case $m = 3$:

$$
\Sigma_3 = \frac{1}{360} \begin{pmatrix} 46 & -23 & -23 & 7 & 7 & -14 \ -23 & 28 & 10 & -2 & -20 & 7 \ -23 & 10 & 28 & -20 & -2 & 7 \ 7 & -2 & -20 & 28 & 10 & -23 \ 7 & -20 & -2 & 10 & 28 & -23 \ -14 & 7 & 7 & -23 & -23 & 46 \end{pmatrix}
$$

Possible OP-test statistics, see Bandt (2019), Weiß (2022):

- \bullet entropy $H(\widehat{\bm p}) = {}- \Sigma_{k=1}^{m!} \, \widehat p_k$ In $\widehat p_k$,
- distance to white noise $\Delta^2(\widehat{p}) = \sum_{k=1}^{m!} (\widehat{p}_k 1/m!)$ $\sqrt{2}$,
- \bullet extropy $H_{\mathsf{ex}}(\widehat{\bm{p}}) = -\sum_{k=1}^{m!} \left(1-p_k\right) \, \mathsf{In}\, \big(1-p_k\big).$

Theorem: If $(X_t)_{\mathbb{Z}}$ i. i. d., then

 $n \Delta^2(\widehat{p}), \quad -n \frac{2}{m}$ $\overline{m!}$ $\sqrt{ }$ $H(\widehat{\bm p}) - {\mathsf{In}}\, m! \Bigr)$, and $-2n\left(1-\frac{1}{m}\right)$ $\overline{m!}$) $\left(H_{\mathsf{ex}}(\widehat{\bm{p}}) - (m! - 1) \, \ln \left(\frac{m!}{m! - 1}\right)\right)$ $\overline{m!-1}$ \bigwedge asymptotically distributed like $\quad Q_m := \sum_{i=1}^l \lambda_i \, \chi_{r_i}^2$ \bar{r}_i , where $\lambda_1, \ldots, \lambda_l$ distinct eigenvalues of Σ_m (multiplicities r_1, \ldots, r_l).

Corollary: If $(X_t)_{\mathbb{Z}}$ i. i. d. and $m = 3$, then

$$
n\,\Delta^2(\widehat{\boldsymbol{p}}),\quad -\tfrac{n}{3}\left(H(\widehat{\boldsymbol{p}})-\ln 6\right),\quad -\tfrac{5n}{3}\left(H_{\text{ex}}(\widehat{\boldsymbol{p}})-5\,\ln\left(\tfrac{6}{5}\right)\right)
$$

asymptotically distributed like

$$
\frac{1}{12}(2+\sqrt{2}) \cdot \chi_1^2 + \frac{2}{15} \cdot \chi_1^2 + \frac{1}{10} \cdot \chi_1^2 + \frac{1}{12}(2-\sqrt{2}) \cdot \chi_1^2.
$$

Asymptotic mean $\frac{17}{30}$ and variance $\frac{2}{9}$.
Furthermore, (...)

Corollary: (. . .) the statistics (proposed by Bandt, 2019) up-down balance: $\hat{\beta} = \hat{p}_6 - \hat{p}_1$, persistence: $\hat{\tau} = \hat{p}_6 + \hat{p}_1 - \frac{1}{3},$ rotational asymmetry: $\hat{\gamma} = \hat{p}_5 + \hat{p}_3 - \hat{p}_4 - \hat{p}_2$, up-down scaling: $\delta = \hat{p}_4 + \hat{p}_5 - \hat{p}_3 - \hat{p}_2$, √ satisfy \overline{n} $\widehat{\beta}$ $\,$ $\stackrel{\mathsf{a}}{\sim}$ a $\stackrel{d}{\sim} N(0, 1/3),$ $\stackrel{d}{\sim}$ N(0, 8/45), $\overline{n}~\widehat{\tau}$ √ √ a $\overline{n} \, \widehat{\delta} \;\; \stackrel{\mathsf{a}}{\sim} \;\;$ $\stackrel{d}{\sim}$ N(0, 2/5), $\stackrel{d}{\sim}$ N(0, 2/3). $\overline{n} \, \widehat{\gamma}$ **Recall:** $(3, 2, 1)$ $(3, 1, 2)$ $(2, 3, 1)$ $(1, 3, 2)$ $(2, 1, 3)$ $(1, 2, 3)$ \sim \sim \sim \sim \sim \sim \sim \sim

Application: Tests of i. i. d.-null based on previous statistics and corresponding asymptotics (distribution-free!). Allowing for delays $d = 1, 2, \ldots$ $H_{\mathsf{ex}}(\widehat{\bm{p}}^{(d)}),\ \widehat{\beta}^{(d)},\ \widehat{\tau}^{(d)},$ etc. are counterparts to autocorrelation function (ACF) $\hat{\rho}(h)$ with lags $h = 1, 2, \ldots$

Simulation study in Weiß (2022),

ACF superior for linear dependence (ARMA processes),

but OP-tests often superior for non-linear dependence.

OP-tests also robust against outliers (ranks!).

 $\widehat{\tau}^{\left(d\right)}$ excels if also ACF reasonable,

 $H_{\text{ex}}(\widehat{\bm{p}}^{(d)})$ quite universally applicable.

Data example: atmospheric $CO₂$ at Mauna Loa Observatory on Hawaii (monthly means; mole fractions in ppm).

Dependence measures applied to differenced data:

Half-year dependence not recognized by ACF,

but detected by $H_{\text{ex}}(\widehat{\bm{p}}^{(d)})$ and $\hat{\tau}^{(d)}$.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Testing for Serial Dependence in Univariate Discrete-valued Time Series

(jointly with A. Schnurr)

Challenges & Approaches

- Previous OP-tests depend critically on
- assumption of *continuously distributed* process (X_t) ,
- ensures distribution-free tests with unique null distribution.
- In many applications, however, discrete-valued processes (see Weiß, 2018), say (Y_t) .
- If Y_t at least ordinal scale (or even quantitative, e.g., count process), then OPs could still be computed as before. But frequent ties, π_t not uniformly distributed anymore. In fact, see below, vector p strongly depends on actual distribution of X_t (and its parametrization). So how use OPs for discrete-valued processes?

First solution: add continuously distributed noise to Y_t . For example, if Y_t integer range from \mathbb{Z} , then Weiß & Schnurr (2023) suggest uniform noise (U_t) : (U_t) i. i. d. uniform on $(0, 1)$ and independent of (Y_t) , compute OPs from (X_t) defined as $X_t = Y_t + U_t$.

Then, $Y_s < Y_t$ implies $X_s < X_t$, i.e.,

strict orders in (Y_t) preserved, only ties randomly removed.

 (X_t) continuously distributed, previous methods applicable.

However, ties in discrete-valued (Y_t) contain valuable information about serial dependence, lost after adding noise.

Second solution: Like in Bian et al. (2012), Unakafova & Keller (2013), Schnurr & Fischer (2022), consider **generalized OPs** (GOPs) computed from (Y_t) directly. GOPs complement above "strict patterns" by "tied patterns" (i. e., having at least one duplicate rank): (y_1, \ldots, y_m) has GOP $(i_1, \ldots, i_m) \in C_m$ if

 $i_k < i_l \ \Leftrightarrow \ y_k < y_l \qquad \text{and} \qquad i_k = i_l \ \Leftrightarrow \ y_k = y_l,$

for all $k, l \in \{1, \ldots, m\}$. Here, C_m set of mth-order Cayley permutations, its cardinality is mth ordered Bell number (Fubini number), $b(m)$, see Unakafova & Keller (2013).

Examples:
$$
b(2) = 3
$$
 and $C_2 = \{(2, 1), (1, 2)\} \cup \{(1, 1)\}.$

For $m = 3$, $b(3) = 13$ GOPs by complementing $(3, 2, 1)$ $(3, 1, 2)$ $(2, 3, 1)$ $(1, 3, 2)$ $(2, 1, 3)$ $(1, 2, 3)$ $\setminus \bullet$ of \setminus for \bullet \setminus by $(2, 2, 1)$ $(2, 1, 2)$ $(1, 2, 2)$ $(2, 1, 1)$ $(1, 2, 1)$ $(1, 1, 2)$ $(1, 1, 1)$

 \Rightarrow GOPs make use of information contained in ties.

Remark: For $m = 3$, $b(3) = 13$ GOPs,

so in short time series, maybe some GOPs never observed.

 \Rightarrow Weiß & Schnurr (2023) suggest to form groups of GOPs:

Group 1 (increasing GOPs): $G_1 = \{(1, 2, 3), (1, 2, 2), (1, 1, 2)\};$

Group 2 (decreasing GOPs): $G_2 = \{(3, 2, 1), (2, 2, 1), (2, 1, 1)\};$

Group 3 (non-monotone GOPs): $G_3 = C_3 \setminus (G_1 \cup G_2)$.

Test statistics based on $\hat{\mathbf{p}}$, \mathbf{p}_0

for either full set of GOPs or grouped GOPs.

Weiß & Schnurr (2023) use different distances $d(\hat{\mathbf{p}}, \mathbf{p}_0)$.

Distribution of GOPs: Let $P(\pi_t = \pi) = p(\pi)$, denote PMF $p(y) = P(Y_t = y)$ and CDF $f(y) = P(Y_t \le y)$.

Proposition: Let $(Y_t)_{\mathbb{Z}}$ be i. i. d., let $m = 2$, then

$$
p(1,1) = \sum_{y} p(y)^2 = E[p(Y)],
$$

\n
$$
p(1,2) = p(2,1) = \frac{1}{2}(1-p(1,1))
$$

\n
$$
= \sum_{y} p(y) (1-f(y)) = E[1-f(Y)].
$$

Proposition: Let
$$
(Y_t)_\mathbb{Z}
$$
 be i. i. d., let $m = 3$, then
\n
$$
p(1,1,1) = \sum_y p(y)^3 = E[p(Y)^2],
$$
\n
$$
p(1,2,2) = p(2,1,2) = p(2,2,1)
$$
\n
$$
= \sum_y f(y-1)p(y)^2 = E[f(Y-1)p(Y)],
$$
\n
$$
p(1,1,2) = p(1,2,1) = p(2,1,1)
$$
\n
$$
= \sum_y p(y)^2 (1-f(y)) = E[p(Y)(1-f(Y))],
$$

and all strict patterns have unique probability

$$
p(1,2,3) = \sum_{y} f(y-1) p(y) (1-f(y)) = E[f(Y-1) (1-f(Y))].
$$

Example: Probabilities of GOPs for i. i. d. $Geom(\nu)$ -counts:

 \Rightarrow GOP distribution depends on actual distribution of Y_t ,

so GOP-based test statistics of parametric nature.

Asymptotics for $m = 2$: see Weiß & Schnurr (2023).

We circumvent parametric nature by

Scheme for bootstrap implementation:

Let Y_1, \ldots, Y_n be a stationary discrete-valued time series.

1(a) Compute sample pmf from Y_1, \ldots, Y_n , compute corresponding null distribution p_0 by Propositions. (b) Compute estimator $\hat{\mathbf{p}}$ from GOPs derived from Y_1, \ldots, Y_n . (c) Test statistic: distance $d(\hat{\mathbf{p}}, \mathbf{p}_0)$.

 $2.$ (\ldots)

Scheme for bootstrap implementation:

Let Y_1, \ldots, Y_n be a stationary discrete-valued time series.

- $1.$ $($... $)$
- 2. Apply Efron bootstrap to Y_1, \ldots, Y_n :
	- (a) Generate B i. i. d. time series Y_h^* $b, 1, \ldots, Y_{b,n}^*$, $b = 1, \ldots, B$.
	- (b) Compute $\widehat{\mathbf{p}}_h^*$ $_b^*$ from GOPs from $Y_{b,}^*$ $V_{b,1}^*,\ldots,V_{b,n}^*,\;b=1,\ldots,B.$
	- (c) Test statistics (distances) $d(\widehat{\mathbf{p}}_1^*)$ $i_1^*, \mathbf{p}_0), \ldots, d(\hat{\mathbf{p}}_B^*, \mathbf{p}_0).$
		- \Rightarrow approximate sample distribution of $d(\hat{\mathbf{p}}, \mathbf{p}_0)$ under null.
- 3. Compute (1α) -quantile of $d(\hat{\mathbf{p}}_1^*)$ $i_1^*, \mathbf{p}_0), \ldots, d(\hat{\mathbf{p}}_B^*, \mathbf{p}_0),$ use as critical value for $d(\hat{\mathbf{p}}, \mathbf{p}_0)$ to test i. i. d.-null.

Simulation study in Weiß & Schnurr (2023):

- GOP-tests hold level quite accurately (grouped GOPs) or tend to be conservative (all GOPs).
- Much better power than if using noisy OPs.
- Better power than ACF for nonlinear DGPs,

if contamination by additive outliers,

or if remarkable sample paths (exhibiting zero inflation,

long runs of counts, or cascades of decaying counts).

Weiß & Schnurr (2023): application to

hydrologigal data and infectious disease data.

(G)OPs are well-interpretable, robust, and

flexibly adapted to different types of dependence.

If data continuously distributed, we get non-parametric tests.

Work in progress:

In Weiß & Testik (2023), sequential testing of independence in continuously distributed process (X_t) via non-parametric OP-based EWMA control charts. Currently: monitoring of discrete-valued processes, parametric EWMA control charts based on GOPs.

Thank You for Your Interest!

Christian H. Weiß

Department of Mathematics & Statistics

Helmut Schmidt University, Hamburg

weissc@hsu-hh.de

Weiß (2022) Non-parametric tests for serial dependence in time series based on asymptotic . . . Chaos 32(9), 093107.

Weiß & Schnurr (2023) Generalized ordinal patterns in discretevalued time series: . . . Journal of Nonparametric Statistics, in press.

Bandt (2019) Small order patterns ... Entropy 21, 613.

Bandt & Pompe (2002) Permutation entropy ... Phys Rev L 88, 174102. Berger et al. (2019) Teaching ordinal patterns ... *Entropy* 21, 1023. Bian et al. (2012) Modified permutation \ldots Phys Rev E 85, 021906. Elsinger (2010) Independence tests ... Working paper 165, Öst. Nat.bank. Schnurr & Fischer (2022) Generalized OPs ... CSDA 171, 107472. Unakafova & Keller (2013) Efficiently meas... Entropy 15, 4392-4415. Weiß (2018) An Introduction to Discrete-Valued Time Series. Wiley. Weiß & Testik (2023) Non-param. control ch... Technomet 65, 340-350.