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Ordinal pattern (OP) introduced by Bandt & Pompe (2002).

Basic idea: map segments

Xt = (Xt, Xt+1, . . . , Xt+m−1) of length m from

continuously distrib., real-valued process (Xt)t∈Z={...,−1,0,1,...}

onto permutations from symmetric group Sm of order m,

where selected πt ∈ Sm = {π[1], . . . , π[m!]} expresses

order among values in Xt in certain way: (. . . ).
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Rank representation, see Berger et al. (2019):

Entries of π = (r1, . . . , rm) ∈ Sm express

ranks within x = (x1, . . . , xm) ∈ Rm, i. e.,

rk < rl ⇔ xk < xl or (xk = xl and k < l)

for all k, l ∈ {1, . . . ,m}. Here, “xk = xl” if ties within x.

Example: (1.2,−0.7,3.4,1.9) 7→ (2,1,4,3),

(1.2,−0.7,3.4,−0.7) 7→ (3,1,4,2).

Marginal distribution of OP series (πt) provides insights

into serial dependence structure of original process (Xt).
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Focus on m!-dimensional pmf vector p (or sample pmf p̂),

with kth component being pk = P (πt = π[k]).

Here, order m of OPs (thus dimension m!) chosen by user.

However, range of πt quickly increases with m as |Sm| = m!,

so estimation p̂ of p quickly difficult in practice.

If m = 2: only downward OP (2,1) and upward OP (1,2).

Convenient choice is m = 3 (Bandt, 2019):

(3,2,1) (3,1,2) (2,3,1) (1,3,2) (2,1,3) (1,2,3)
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Let (Xt) be continuously distributed real-valued process,

independent and identically distributed (i. i. d.) under null.

Probability of ties = 0, so ties at most rarely in data.

Following properties crucial for dependence tests:

1. OPs invariant w.r.t. strictly monotonically increasing trans-

formations of Xt. Thus, OPs do not depend on actual mar-

ginal distribution of (Xt)N (distribution-free approach).

2. (Xt)N is i. i. d. under null (→ exchangeability).

Thus, πt discrete uniform on Sm, i. e., P
(
πt = π

)
= 1/m!

for each π ∈ Sm (no parameter estimation required).
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OP-test statistics built upon p̂ computed from π1, . . . , πn with

n ∈ N = {1,2, . . .}, where πt from Xt = (Xt, Xt+1, . . . , Xt+m−1)

for t = 1,2, . . . , n (moving-window approach).

First, asymptotics of
√
n

(
p̂− p0

)
under i. i. d.-null required,

where p0 = (1/m!, . . . ,1/m!).

Note: moving-window for (πt) causes (m− 1)-dependence!

Elsinger (2010), Weiß (2022):
√
n

(
p̂− p0

)
→ N(0,Σm),

where Σm computed explicitly by combinatorial arguments.

Then, distribution of OP-test statistics

by Taylor approximations (“Delta method”).
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Asymptotics
√
n

(
p̂− p0

)
→ N(0,Σm)

Σm = (σij)i,j=1,...,m! given by

σij = 1/m!
(
δij − 1/m!

)
+

m−1∑
h=1

(
pij(h) + pji(h)− 2/m!2

)
.

Case m = 3:

Σ3 =
1

360



46 −23 −23 7 7 −14
−23 28 10 −2 −20 7
−23 10 28 −20 −2 7

7 −2 −20 28 10 −23
7 −20 −2 10 28 −23

−14 7 7 −23 −23 46


.
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Possible OP-test statistics, see Bandt (2019), Weiß (2022):

• entropy H
(
p̂
)

= −∑m!
k=1 p̂k ln p̂k,

• distance to white noise ∆2
(
p̂
)

=
∑m!
k=1

(
p̂k − 1/m!

)2,
• extropy Hex

(
p̂
)

= −∑m!
k=1

(
1− pk

)
ln

(
1− pk

)
.

Theorem: If (Xt)Z i. i. d., then

n∆2
(
p̂
)
, −n 2

m!

(
H

(
p̂
)
− lnm!

)
,

and − 2n (1− 1
m!)

(
Hex

(
p̂
)
− (m!− 1) ln

(
m!

m!−1

))
asymptotically distributed like Qm :=

∑l
i=1 λi χ

2
ri
, where

λ1, . . . , λl distinct eigenvalues of Σm (multiplicities r1, . . . , rl).
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Corollary: If (Xt)Z i. i. d. and m = 3, then

n∆2
(
p̂
)
, −n

3

(
H

(
p̂
)
− ln 6

)
, −5n

3

(
Hex

(
p̂
)
− 5 ln

(
6
5

))

asymptotically distributed like

1
12(2 +

√
2) · χ2

1 + 2
15 · χ2

1 + 1
10 · χ2

1 + 1
12(2−

√
2) · χ2

1.

Asymptotic mean 17
30 and variance 2

9.

Furthermore, (. . . )
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Corollary: (. . . ) the statistics (proposed by Bandt, 2019)

up-down balance: β̂ = p̂6 − p̂1,

persistence: τ̂ = p̂6 + p̂1 − 1
3,

rotational asymmetry: γ̂ = p̂5 + p̂3 − p̂4 − p̂2,

up-down scaling: δ̂ = p̂4 + p̂5 − p̂3 − p̂2,

satisfy √
n β̂

a∼ N
(
0, 1/3

)
,

√
n τ̂

a∼ N
(
0, 8/45

)
,

√
n γ̂

a∼ N
(
0, 2/5

)
,

√
n δ̂

a∼ N
(
0, 2/3

)
.

Recall: (3,2,1) (3,1,2) (2,3,1) (1,3,2) (2,1,3) (1,2,3)
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Application: Tests of i. i. d.-null based on previous

statistics and corresponding asymptotics (distribution-free!).

Allowing for delays d = 1,2, . . .,

Hex
(
p̂(d)

)
, β̂(d), τ̂(d), etc. are counterparts to

autocorrelation function (ACF) ρ̂(h) with lags h = 1,2, . . .

Simulation study in Weiß (2022),

ACF superior for linear dependence (ARMA processes),

but OP-tests often superior for non-linear dependence.

OP-tests also robust against outliers (ranks!).

τ̂(d) excels if also ACF reasonable,

Hex
(
p̂(d)

)
quite universally applicable.
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Data example: atmospheric CO2 at Mauna Loa Observatory

on Hawaii (monthly means; mole fractions in ppm).

Original data: Differenced data:
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Dependence measures applied to differenced data:
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Discrete-valued Time Series
(jointly with A. Schnurr)

Challenges & Approaches
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Previous OP-tests depend critically on

assumption of continuously distributed process (Xt),

ensures distribution-free tests with unique null distribution.

In many applications, however, discrete-valued processes

(see Weiß, 2018), say (Yt).

If Yt at least ordinal scale (or even quantitative, e. g., count

process), then OPs could still be computed as before.

But frequent ties, πt not uniformly distributed anymore.

In fact, see below, vector p strongly depends on

actual distribution of Xt (and its parametrization).

So how use OPs for discrete-valued processes?
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First solution: add continuously distributed noise to Yt.

For example, if Yt integer range from Z,

then Weiß & Schnurr (2023) suggest uniform noise (Ut):

(Ut) i. i. d. uniform on (0; 1) and independent of (Yt),

compute OPs from (Xt) defined as Xt = Yt + Ut.

Then, Ys < Yt implies Xs < Xt, i. e.,

strict orders in (Yt) preserved, only ties randomly removed.

(Xt) continuously distributed, previous methods applicable.

However, ties in discrete-valued (Yt) contain valuable

information about serial dependence, lost after adding noise.
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Second solution: Like in Bian et al. (2012), Unakafova &

Keller (2013), Schnurr & Fischer (2022), consider

generalized OPs (GOPs) computed from (Yt) directly.

GOPs complement above “strict patterns” by

“tied patterns” (i. e., having at least one duplicate rank):

(y1, . . . , ym) has GOP (i1, . . . , im) ∈ Cm if

ik < il ⇔ yk < yl and ik = il ⇔ yk = yl,

for all k, l ∈ {1, . . . ,m}. Here, Cm set of mth-order Cayley

permutations, its cardinality is mth ordered Bell number

(Fubini number), b(m), see Unakafova & Keller (2013).
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Examples: b(2) = 3 and C2 =
{
(2,1), (1,2)

}
∪

{
(1,1)

}
.

For m = 3, b(3) = 13 GOPs by complementing

(3,2,1) (3,1,2) (2,3,1) (1,3,2) (2,1,3) (1,2,3)

by

(2,2,1) (2,1,2) (1,2,2) (2,1,1) (1,2,1) (1,1,2) (1,1,1)

⇒ GOPs make use of information contained in ties.
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Remark: For m = 3, b(3) = 13 GOPs,

so in short time series, maybe some GOPs never observed.

⇒ Weiß & Schnurr (2023) suggest to form groups of GOPs:

Group 1 (increasing GOPs): G1 = {(1,2,3), (1,2,2), (1,1,2)};

Group 2 (decreasing GOPs): G2 = {(3,2,1), (2,2,1), (2,1,1)};

Group 3 (non-monotone GOPs): G3 = C3 \ (G1 ∪G2).

Test statistics based on p̂,p0

for either full set of GOPs or grouped GOPs.

Weiß & Schnurr (2023) use different distances d(p̂,p0).
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Distribution of GOPs: Let P
(
πt = π

)
= p(π),

denote PMF p(y) = P (Yt = y) and CDF f(y) = P (Yt ≤ y).

Proposition: Let (Yt)Z be i. i. d., let m = 2, then

p(1,1) =
∑
y
p(y)2 = E

[
p(Y )

]
,

p(1,2) = p(2,1) = 1
2

(
1− p(1,1)

)
=

∑
y
p(y)

(
1− f(y)

)
= E

[
1− f(Y )

]
.
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Proposition: Let (Yt)Z be i. i. d., let m = 3, then

p(1,1,1) =
∑
y
p(y)3 = E

[
p(Y )2

]
,

p(1,2,2) = p(2,1,2) = p(2,2,1)

=
∑
y
f(y − 1) p(y)2 = E

[
f(Y − 1) p(Y )

]
,

p(1,1,2) = p(1,2,1) = p(2,1,1)

=
∑
y
p(y)2

(
1− f(y)

)
= E

[
p(Y )

(
1− f(Y )

)]
,

and all strict patterns have unique probability

p(1,2,3) =
∑
y
f(y− 1) p(y)

(
1− f(y)

)
= E

[
f(Y − 1)

(
1− f(Y )

)]
.
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Example: Probabilities of GOPs for i. i. d. Geom(ν)-counts:
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⇒ GOP distribution depends on actual distribution of Yt,

so GOP-based test statistics of parametric nature.

Asymptotics for m = 2: see Weiß & Schnurr (2023).
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We circumvent parametric nature by

Scheme for bootstrap implementation:

Let Y1, . . . , Yn be a stationary discrete-valued time series.

1.(a) Compute sample pmf from Y1, . . . , Yn, compute

corresponding null distribution p0 by Propositions.

(b) Compute estimator p̂ from GOPs derived from Y1, . . . , Yn.

(c) Test statistic: distance d(p̂,p0).

2. (. . . )
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Scheme for bootstrap implementation:

Let Y1, . . . , Yn be a stationary discrete-valued time series.

1. (. . . )

2. Apply Efron bootstrap to Y1, . . . , Yn:

(a) Generate B i. i. d. time series Y ∗
b,1, . . . , Y

∗
b,n, b = 1, . . . , B.

(b) Compute p̂∗
b from GOPs from Y ∗

b,1, . . . , Y
∗
b,n, b = 1, . . . , B.

(c) Test statistics (distances) d(p̂∗
1,p0), . . . , d(p̂∗

B,p0).

⇒ approximate sample distribution of d(p̂,p0) under null.

3. Compute (1− α)-quantile of d(p̂∗
1,p0), . . . , d(p̂∗

B,p0),

use as critical value for d(p̂,p0) to test i. i. d.-null.
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Simulation study in Weiß & Schnurr (2023):

• GOP-tests hold level quite accurately (grouped GOPs)

or tend to be conservative (all GOPs).

• Much better power than if using noisy OPs.

• Better power than ACF for nonlinear DGPs,

if contamination by additive outliers,

or if remarkable sample paths (exhibiting zero inflation,

long runs of counts, or cascades of decaying counts).

Weiß & Schnurr (2023): application to

hydrologigal data and infectious disease data.
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(G)OPs are well-interpretable, robust, and

flexibly adapted to different types of dependence.

If data continuously distributed, we get non-parametric tests.

Work in progress:

In Weiß & Testik (2023), sequential testing of independence

in continuously distributed process (Xt) via

non-parametric OP-based EWMA control charts.

Currently: monitoring of discrete-valued processes,

parametric EWMA control charts based on GOPs.

Christian H. Weiß — Helmut Schmidt University, Hamburg



Thank You

for Your Interest!

MATH 

STAT 

Christian H. Weiß

Department of Mathematics & Statistics

Helmut Schmidt University, Hamburg

weissc@hsu-hh.de

mailto:weissc@hsu-hh.de


Literature MATH 

STAT 

Weiß (2022) Non-parametric tests for serial dependence in time se-
ries based on asymptotic . . . Chaos 32(9), 093107.

Weiß & Schnurr (2023) Generalized ordinal patterns in discrete-
valued time series: . . . Journal of Nonparametric Statistics, in press.

Bandt (2019) Small order patterns . . . Entropy 21, 613.

Bandt & Pompe (2002) Permutation entropy . . . Phys Rev L 88, 174102.

Berger et al. (2019) Teaching ordinal patterns . . . Entropy 21, 1023.

Bian et al. (2012) Modified permutation . . . Phys Rev E 85, 021906.

Elsinger (2010) Independence tests . . . Working paper 165, Öst. Nat.bank.

Schnurr & Fischer (2022) Generalized OPs . . . CSDA 171, 107472.

Unakafova & Keller (2013) Efficiently meas. . . Entropy 15, 4392–4415.

Weiß (2018) An Introduction to Discrete-Valued Time Series. Wiley.

Weiß & Testik (2023) Non-param. control ch. . . Technomet 65, 340–350.

Christian H. Weiß — Helmut Schmidt University, Hamburg


