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Ordinal pattern (OP) introduced by Bandt & Pompe (2002).

Basic idea: map segments

X = (X4, X441, -, Xpgm—1) Of length m from

continuously distrib., real-valued process (Xt)icz—¢  _1,01,.}
onto permutations from symmetric group S,, of order m,
where selected m; € Sy = {xlt, ... #lm 1} expresses

order among values in X; in certain way: (...).
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Rank representation, see Berger et al. (2019):

Entries of # = (r1,...,7m) € Sm €xpress
ranks within £ = (x1,...,zm) € R™, i.e.,

T < 7 & r, <x; Or (xp=x; and k <)
for all k,l € {1,...,m}. Here, “x;, = ;" if ties within x.

Example: (1.2,-0.7,3.4,19) — (2,1,4,3),
(1.2,-0.7,3.4,—-0.7) — (3,1,4,2).

Marginal distribution of OP series (m;) provides insights

into serial dependence structure of original process (X¢).
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Focus on m!-dimensional pmf vector p (or sample pmf p),

with kth component being p, = P(m; = wl¥]).
Here, order m of OPs (thus dimension m!) chosen by user.

However, range of m; quickly increases with m as |Smy| = m!,

so estimation p of p quickly difficult in practice.

If m = 2: only downward OP (2,1) and upward OP (1,2).

Convenient choice is m = 3 (Bandt, 2019):

(3,2,1) (3,1,2) (2,3,1) (1,3,2) (2,1,3) (1,2,3)

\°\ .\./° - \ / K '\./. /°/
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Let (X;) be continuously distributed real-valued process,
independent and identically distributed (i.i.d.) under null.

Probability of ties = 0O, so ties at most rarely in data.

Following properties crucial for dependence tests:

1. OPs invariant w.r.t. strictly monotonically increasing trans-
formations of X;. Thus, OPs do not depend on actual mar-
ginal distribution of (X;)y (distribution-free approach).

2. (X¢)y isi.i.d. under null (— exchangeability).

Thus, 7 discrete uniform on Sy, i.e., P(m=m)=1/m!

for each 7w € S;, (Nno parameter estimation required).
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OP-test statistics built upon p computed from =q,..., 7, With
n €N = {1,2, . .}, where m; from X; = (XtaXt—I—la e 7Xt—|—m—1)

fort=1,2,...,n (moving-window approach).

First, asymptotics of \/n (p — pg) under i.i.d.-null required,
where pg = (1/m!,...,1/m!).

Note: moving-window for (m;) causes (m — 1)-dependence!
Elsinger (2010), WeiB (2022): /n (p—pg) — N(0,Zm),

where >, computed explicitly by combinatorial arguments.

T hen, distribution of OP-test statistics
by Taylor approximations (“Delta method").
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Asymptotics /n(p—pg) — N(0,3n)

Yim = (045)i,j=1,..m! diven by
m—1 5
oij = 1/m!(6;;—1/m!) + h; (pij(h)—l-pji(h)—Q/m! )

Case m = 3:

[ 46 —23 —23 7 7 —14 )
23 28 10 -2 -20 7
1 | —23 10 28 —-20 -2 7
360 7 -2 —20 28 10 —23
7 —20 -2 10 28 —-23
| -14 7 7 -23 -23 46

diz =
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Possible OP-test statistics, see Bandt (2019), Weils (2022):
e entropy H(p) = —XP4, b In by,
e distance to white noise AZ?(p) = XX, (P — 1/m')2,
o extropy Hex(p) = —SP; (1 —pg) In(1—pg).
Theorem: If (X;)7 i.i.d., then
nA2(p), —n2 (HB)-Inml),
and - 2n (1 - 1) (Hex(B) — (m! — 1) In (;714))
asymptotically distributed like Qm 1= Xi_; A\;x2, where

A1,...,A; distinct eigenvalues of X, (multiplicities rq,...,r).
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Corollary: If (X;)z i.i.d. and m = 3, then
na2(p), —5(H(p)—-In6), —% (Hex(p)—51n(9))
asymptotically distributed like

5Q+V2) X3 + 53 + 158 + 52-vV2) X3
2

Asymptotic mean %—g and variance 2.

Furthermore, (...)
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Corollary: (...) the statistics (proposed by Bandt, 2019)

up-down balance: B = pg — D1,

1

persistence: T = + p1 — 3

D6
rotational asymmetry: 4 = ps + p3 — pa — po,
up-down scaling: § = Py
(0, 1/3), NG
Vno

satisfy 7B 3 N
NG N(0, 2/5),

Recall:  (3,2,1) (3,1,2) (2,3,1) (1,3,2) (2,1,3) (1,2,3)
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Application: Tests of i.i.d.-null based on previous

statistics and corresponding asymptotics (distribution-freel!).

Allowing for delays d =1,2,...,
Hex(p(D), pld), 7(d) etc. are counterparts to
autocorrelation function (ACF) p(h) with lags h=1,2,...

Simulation study in Weil (2022),

ACF superior for linear dependence (ARMA processes),
but OP-tests often superior for non-linear dependence.
OP-tests also robust against outliers (ranks!).

7(d) excels if also ACF reasonable,
Hex(f)(d)) quite universally applicable.
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Data example: atmospheric CO5 at Mauna Loa Observatory

on Hawaii (monthly means; mole fractions in ppm).

Original data: Differenced data:
Sl S = ]
o ° n

~ % — 8 o

S g

5 3 - S 2

s @ 3
o Toe

[ [ [ [ [ [ [ [ [ [ [
1960 1970 1980 1990 2000 2010 2020 Year 0 200 400 600 ¢
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Dependence measures applied to differenced data:
S e I""l'"l'i """" L ;:
|---1 -------------- S N . S 8 Half-year
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¢ § .|||||.‘ .|||||| nOt
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Previous OP-tests depend critically on

assumption of continuously distributed process (X¢),
ensures distribution-free tests with unique null distribution.
In many applications, however, discrete-valued processes
(see Weils, 2018), say (Y7).

If Y; at least ordinal scale (or even quantitative, e. g., count
process), then OPs could still be computed as before.

But frequent ties, m not uniformly distributed anymore.

In fact, see below, vector p strongly depends on

actual distribution of X; (and its parametrization).

So how use OPs for discrete-valued processes?
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First solution: add continuously distributed noise to Y;.
For example, if Y; integer range from Z,

then Weils & Schnurr (2023) suggest uniform noise (U;):
(Ug) i.i.d. uniform on (0;1) and independent of (Y7),
compute OPs from (X;) defined as X; = Y; + Us;.

Then, Ys <Y; implies Xg < Xy, 1. €.,
strict orders in (Y;) preserved, only ties randomly removed.

(X;:) continuously distributed, previous methods applicable.

However, ties in discrete-valued (Y;) contain valuable

information about serial dependence, lost after adding noise.
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Second solution: Like in Bian et al. (2012), Unakafova &
Keller (2013), Schnurr & Fischer (2022), consider
generalized OPs (GOPs) computed from (Y;) directly.

GOPs complement above ‘'strict patterns’ by

“tied patterns” (i.e., having at least one duplicate rank):

(y1,...,ym) has GOP (i1,...,im) € Cpm if

i <1 & Y <Y and ik =1 < Y = Y

for all k,1 € {1,...,m}. Here, C;, set of mth-order Cayley
permutations, its cardinality is mth ordered Bell number

(Fubini number), b(m), see Unakafova & Keller (2013).
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Examples: b5(2) =3 and Cy ={(2,1),(1,2)} U{(1,1)}.

For m = 3, b(3) = 13 GOPs by complementing
(3,2,1) (3,1,2) (2,3,1) (1,3,2) (2,1,3) (1,2,3)

\°\ \ ° °/.\. ./.\° AN / /°/

by
(2,2,1) (2,1,2) (1,2,2) (2,1,1) (1,2,1) (1,1,2) (1,1,1)

= GOPs make use of information contained in ties.
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Remark: For m =3, b(3) = 13 GOPs,

SO in short time series, maybe some GOPs never observed.

= Weill & Schnurr (2023) suggest to form groups of GOPs:
Group 1 (increasing GOPs): G1 ={(1,2,3),(1,2,2),(1,1,2)};
Group 2 (decreasing GOPs): G, ={(3,2,1),(2,2,1),(2,1,1)};
Group 3 (non-monotone GOPs): Gz =C3\ (G1UG»).

Test statistics based on p, pg
for either full set of GOPs or grouped GOPs.
Weilk & Schnurr (2023) use different distances d(P, Pg).
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Distribution of GOPs: Let P(m =) = p(m),
denote PMF p(y) = P(Y; = y) and CDF f(y) = P(Y; <uy).

Proposition: Let (Y;)7 bei.i.d., let m = 2, then
p(1,1) = Y py)* = E[p(Y)],
Y

p(1,2) = p(2,1) = 5(1-p(1,1))
%p(y) (1-f(y)) = E|1—-f()]
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Proposition: Let (Y;)y bei.i.d., let m = 3, then
p(1,1,1) = %p(yﬁ = E[p(Y)?],
p(1,2,2) = p(2,1,2) = p(2,2,1)
= §f<y—1)p<y)2 = E[/(Y - 1)p(Y)],
p(1,1,2) = p(1,2,1) = p(2,1,1)
%ﬁp(y)z (1—/(y) = Ep)(1-11)),

and all strict patterns have unique probability

p(1,2,3) = gﬂy—l)p(y) (1—/(y) = Ef(Y -1)(1—/(Y))].
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i.i.d. Geom(v)-counts:

m=3:

— p1.11)
- - p112)

-+ p(1,2,2)
= p1.23)

= GOP distribution depends on actual distribution of Y%,

so GOP-based test statistics of parametric nature.

ASy

mptotics for m = 2: see Weilk & Schnurr (2023).
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We circumvent parametric nature by

Scheme for bootstrap implementation:

Let Y7,...,Y, be a stationary discrete-valued time series.

1(a) Compute sample pmf from Y7,...,Y,, compute
corresponding null distribution pg by Propositions.
(b) Compute estimator p from GOPs derived from Y7,..., Y.
(c) Test statistic: distance d(p,pg).

2. (...)
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Scheme for bootstrap implementation:

Let Y7,...,Y, be a stationary discrete-valued time series.

1. (...)
2. Apply Efron bootstrap to Y1,...,Yn:

(a) Generate B i.i.d. time series Y;*¢,..., Y} , b=1,...,B.
(b) Compute p; from GOPs from Ybfl,...,Ybfn, b=1,...,B.
(c) Test statistics (distances) d(Pi,Pg),.--,d(Pp, Po)-

= approximate sample distribution of d(p,pg) under null.

3. Compute (1 — a)-quantile of d(P7,Po),-..,d(P%s, Po),

use as critical value for d(P,pg) to test i.i.d.-null.
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Simulation study in Weils & Schnurr (2023):
e GOP-tests hold level quite accurately (grouped GOPs)
or tend to be conservative (all GOPs).
e Much better power than if using noisy OPs.
e Better power than ACF for nonlinear DGPs,
if contamination by additive outliers,
or if remarkable sample paths (exhibiting zero inflation,

long runs of counts, or cascades of decaying counts).

Weils & Schnurr (2023): application to

hydrologigal data and infectious disease data.
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(G)OPs are well-interpretable, robust, and
flexibly adapted to different types of dependence.

If data continuously distributed, we get non-parametric tests.

WorKk In progress:

In Weill & Testik (2023), sequential testing of independence
in continuously distributed process (X;) via

non-parametric OP-based EWMA control charts.

Currently: monitoring of discrete-valued processes,

parametric EWMA control charts based on GOPs.
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