Testing for Serial Dependence by Using Ordinal Patterns

Universität der Bundeswehr Hamburg

Christian H. Weiß

Department of Mathematics & Statistics, Helmut Schmidt University, Hamburg

Alexander Schnurr

Department of Mathematics, University of Siegen

Ordinal Patterns in Continuously-distributed Real-valued Time Series

Introduction

Ordinal pattern (OP) introduced by Bandt & Pompe (2002).

Basic idea: map segments $X_t = (X_t, X_{t+1}, ..., X_{t+m-1})$ of length m from continuously distrib., real-valued process $(X_t)_{t \in \mathbb{Z} = \{..., -1, 0, 1, ...\}}$ onto permutations from symmetric group S_m of order m, where selected $\pi_t \in S_m = \{\pi^{[1]}, ..., \pi^{[m!]}\}$ expresses order among values in X_t in certain way: (...).

Rank representation, see Berger et al. (2019): Entries of $\pi = (r_1, \ldots, r_m) \in S_m$ express ranks within $x = (x_1, \ldots, x_m) \in \mathbb{R}^m$, i.e., $r_k < r_l \qquad \Leftrightarrow \qquad x_k < x_l \quad \text{or} \quad (x_k = x_l \text{ and } k < l)$ for all $k, l \in \{1, \ldots, m\}$. Here, " $x_k = x_l$ " if ties within x. **Example:** $(1.2, -0.7, 3.4, 1.9) \mapsto (2, 1, 4, 3),$ $(1.2, -0.7, 3.4, -0.7) \mapsto (3, 1, 4, 2).$ **Marginal distribution** of OP series (π_t) provides insights

into serial dependence structure of original process (X_t) .

Focus on *m*!-dimensional **pmf vector** p (or sample pmf \hat{p}), with *k*th component being $p_k = P(\pi_t = \pi^{[k]})$.

Here, order m of OPs (thus dimension m!) chosen by user.

However, range of π_t quickly increases with m as $|S_m| = m!$, so estimation \hat{p} of p quickly difficult in practice.

If m = 2: only downward OP (2,1) and upward OP (1,2).

Convenient choice is m = 3 (Bandt, 2019):

Testing for Serial Dependence in Continuously-distributed Real-valued Time Series

Approaches & Asymptotics

Let (X_t) be continuously distributed real-valued process, independent and identically distributed (i. i. d.) under null. Probability of ties = 0, so ties at most rarely in data.

Following **properties** crucial for dependence tests:

- 1. OPs invariant w.r.t. strictly monotonically increasing transformations of X_t . Thus, OPs do not depend on actual marginal distribution of $(X_t)_{\mathbb{N}}$ (**distribution-free** approach).
- 2. $(X_t)_{\mathbb{N}}$ is i. i. d. under null (\rightarrow exchangeability). Thus, π_t discrete uniform on S_m , i. e., $P(\pi_t = \pi) = 1/m!$

for each $\pi \in S_m$ (no parameter estimation required).

OP-test statistics built upon \hat{p} computed from π_1, \ldots, π_n with $n \in \mathbb{N} = \{1, 2, \ldots\}$, where π_t from $X_t = (X_t, X_{t+1}, \ldots, X_{t+m-1})$ for $t = 1, 2, \ldots, n$ (moving-window approach).

First, asymptotics of $\sqrt{n} (\hat{p} - p_0)$ under i. i. d.-null required, where $p_0 = (1/m!, ..., 1/m!)$.

Note: moving-window for (π_t) causes (m-1)-dependence! Elsinger (2010), Weiß (2022): $\sqrt{n} (\hat{p} - p_0) \rightarrow N(0, \Sigma_m)$,

where Σ_m computed explicitly by combinatorial arguments.

Then, distribution of OP-test statistics

by Taylor approximations ("Delta method").

Asymptotics
$$\sqrt{n}\left(\widehat{\boldsymbol{p}}-\boldsymbol{p}_{0}
ight)$$
 $ightarrow$ N(0, Σ_{m})

 $\Sigma_m = (\sigma_{ij})_{i,j=1,...,m!}$ given by

$$\sigma_{ij} = 1/m! \left(\delta_{ij} - 1/m! \right) + \sum_{h=1}^{m-1} \left(p_{ij}(h) + p_{ji}(h) - 2/m!^2 \right).$$

Case m = 3:

$$\Sigma_{3} = \frac{1}{360} \begin{pmatrix} 46 & -23 & -23 & 7 & 7 & -14 \\ -23 & 28 & 10 & -2 & -20 & 7 \\ -23 & 10 & 28 & -20 & -2 & 7 \\ 7 & -2 & -20 & 28 & 10 & -23 \\ 7 & -20 & -2 & 10 & 28 & -23 \\ -14 & 7 & 7 & -23 & -23 & 46 \end{pmatrix}$$

Possible OP-test statistics, see Bandt (2019), Weiß (2022):

- entropy $H(\hat{p}) = -\sum_{k=1}^{m!} \hat{p}_k \ln \hat{p}_k$,
- distance to white noise $\Delta^2(\widehat{p}) = \sum_{k=1}^{m!} (\widehat{p}_k 1/m!)^2$,
- extropy $H_{\text{ex}}(\widehat{p}) = -\sum_{k=1}^{m!} (1-p_k) \ln (1-p_k).$

Theorem: If $(X_t)_{\mathbb{Z}}$ i.i.d., then

 $n \Delta^{2}(\hat{p}), \quad -n \frac{2}{m!} \left(H(\hat{p}) - \ln m! \right),$ and $-2n \left(1 - \frac{1}{m!}\right) \left(H_{\text{ex}}(\hat{p}) - (m! - 1) \ln \left(\frac{m!}{m! - 1}\right) \right)$ asymptotically distributed like $Q_{m} := \sum_{i=1}^{l} \lambda_{i} \chi_{r_{i}}^{2}, \quad \text{where}$ $\lambda_{1}, \dots, \lambda_{l}$ distinct eigenvalues of Σ_{m} (multiplicities r_{1}, \dots, r_{l}).

Corollary: If $(X_t)_{\mathbb{Z}}$ i.i.d. and m = 3, then

$$n \Delta^2(\widehat{p}), \quad -\frac{n}{3} \left(H(\widehat{p}) - \ln 6 \right), \quad -\frac{5n}{3} \left(H_{\text{ex}}(\widehat{p}) - 5 \ln \left(\frac{6}{5}\right) \right)$$

asymptotically distributed like

$$\frac{1}{12}(2+\sqrt{2})\cdot\chi_{1}^{2} + \frac{2}{15}\cdot\chi_{1}^{2} + \frac{1}{10}\cdot\chi_{1}^{2} + \frac{1}{12}(2-\sqrt{2})\cdot\chi_{1}^{2}.$$
Asymptotic mean $\frac{17}{30}$ and variance $\frac{2}{9}$.
Furthermore, (...)

Corollary: (...) the statistics (proposed by Bandt, 2019) up-down balance: $\hat{\beta} = \hat{p}_6 - \hat{p}_1$, $\hat{\tau} = \hat{p}_6 + \hat{p}_1 - \frac{1}{3},$ persistence: rotational asymmetry: $\hat{\gamma} = \hat{p}_5 + \hat{p}_3 - \hat{p}_4 - \hat{p}_2$, $\widehat{\delta} = \widehat{p}_4 + \widehat{p}_5 - \widehat{p}_3 - \widehat{p}_2,$ up-down scaling: satisfy $\sqrt{n}\,\widehat{\beta} \stackrel{a}{\sim} \mathsf{N}(0, 1/3), \qquad \sqrt{n}\,\widehat{\tau} \stackrel{a}{\sim} \mathsf{N}(0, 8/45),$ $\sqrt{n}\,\hat{\gamma} \stackrel{a}{\sim} N(0, 2/5), \qquad \sqrt{n}\,\hat{\delta} \stackrel{a}{\sim} N(0, 2/3).$ **Recall:** (3,2,1) (3,1,2) (2,3,1) (1,3,2) (2,1,3) (1,2,3)

Application: Tests of i. i. d.-null based on previous statistics and corresponding asymptotics (distribution-free!). Allowing for delays d = 1, 2, ..., $H_{\text{ex}}(\hat{p}^{(d)}), \hat{\beta}^{(d)}, \hat{\tau}^{(d)}$, etc. are counterparts to autocorrelation function (ACF) $\hat{\rho}(h)$ with lags h = 1, 2, ...

Simulation study in Weiß (2022),

ACF superior for linear dependence (ARMA processes),

but OP-tests often superior for non-linear dependence.

OP-tests also robust against outliers (ranks!).

 $\hat{\tau}^{(d)}$ excels if also ACF reasonable,

 $H_{\mathsf{ex}}(\widehat{p}^{(d)})$ quite universally applicable.

Data example: atmospheric CO_2 at Mauna Loa Observatory on Hawaii (monthly means; mole fractions in ppm).

Dependence measures applied to differenced data:

Half-year dependence not recognized by ACF,

but detected by $H_{\text{ex}}(\widehat{p}^{(d)})$ and $\widehat{\tau}^{(d)}$.

Christian H. Weiß — Helmut Schmidt University, Hamburg

Testing for Serial Dependence in Univariate Discrete-valued Time Series

(jointly with A. Schnurr)

Challenges & Approaches

- Previous OP-tests depend critically on
- assumption of continuously distributed process (X_t) ,
- ensures distribution-free tests with unique null distribution.
- In many applications, however, **discrete-valued processes** (see Weiß, 2018), say (Y_t) .
- If Y_t at least ordinal scale (or even quantitative, e.g., count process), then OPs could still be computed as before. But frequent ties, π_t not uniformly distributed anymore. In fact, see below, vector p strongly depends on actual distribution of X_t (and its parametrization). So how use **OPs for discrete-valued processes?**

First solution: add continuously distributed noise to Y_t . For example, if Y_t integer range from \mathbb{Z} , then Weiß & Schnurr (2023) suggest **uniform noise** (U_t) : (U_t) i. i. d. uniform on (0; 1) and independent of (Y_t) , compute OPs from (X_t) defined as $X_t = Y_t + U_t$.

Then, $Y_s < Y_t$ implies $X_s < X_t$, i.e.,

strict orders in (Y_t) preserved, only ties randomly removed.

 (X_t) continuously distributed, previous methods applicable.

However, ties in discrete-valued (Y_t) contain valuable information about serial dependence, lost after adding noise.

Second solution: Like in Bian et al. (2012), Unakafova & Keller (2013), Schnurr & Fischer (2022), consider generalized OPs (GOPs) computed from (Y_t) directly. GOPs complement above "strict patterns" by "tied patterns" (i. e., having at least one duplicate rank):

$$(y_1, \dots, y_m)$$
 has GOP $(i_1, \dots, i_m) \in C_m$ if
 $i_k < i_l \Leftrightarrow y_k < y_l$ and $i_k = i_l \Leftrightarrow y_k = y_l$,

for all $k, l \in \{1, ..., m\}$. Here, C_m set of *m*th-order Cayley permutations, its cardinality is *m*th ordered Bell number (Fubini number), b(m), see Unakafova & Keller (2013).

Examples:
$$b(2) = 3$$
 and $C_2 = \{(2,1), (1,2)\} \cup \{(1,1)\}.$

For m = 3, b(3) = 13 GOPs by complementing (3,2,1) (3,1,2) (2,3,1) (1,3,2) (2,1,3) (1,2,3) (3,2,1) (3,1,2) (2,3,1) (1,3,2) (2,1,3) (1,2,3) (4,4) (4,

 \Rightarrow GOPs make use of information contained in ties.

Remark: For m = 3, b(3) = 13 GOPs,

so in short time series, maybe some GOPs never observed.

 \Rightarrow Weiß & Schnurr (2023) suggest to form groups of GOPs:

Group 1 (increasing GOPs): $G_1 = \{(1, 2, 3), (1, 2, 2), (1, 1, 2)\};$

Group 2 (decreasing GOPs): $G_2 = \{(3, 2, 1), (2, 2, 1), (2, 1, 1)\};$

Group 3 (non-monotone GOPs): $G_3 = C_3 \setminus (G_1 \cup G_2).$

Test statistics based on $\hat{\mathbf{p}}, \mathbf{p}_0$

for either full set of GOPs or grouped GOPs.

Weiß & Schnurr (2023) use different distances $d(\hat{\mathbf{p}}, \mathbf{p}_0)$.

Distribution of GOPs: Let $P(\pi_t = \pi) = p(\pi)$, denote PMF $p(y) = P(Y_t = y)$ and CDF $f(y) = P(Y_t \le y)$.

Proposition: Let $(Y_t)_{\mathbb{Z}}$ be i. i. d., let m = 2, then

$$p(1,1) = \sum_{y} p(y)^{2} = E[p(Y)],$$

$$p(1,2) = p(2,1) = \frac{1}{2}(1-p(1,1))$$

$$= \sum_{y} p(y)(1-f(y)) = E[1-f(Y)].$$

,

Proposition: Let
$$(Y_t)_{\mathbb{Z}}$$
 be i. i. d., let $m = 3$, then

$$p(1,1,1) = \sum_{y} p(y)^3 = E[p(Y)^2],$$

$$p(1,2,2) = p(2,1,2) = p(2,2,1)$$

$$= \sum_{y} f(y-1) p(y)^2 = E[f(Y-1) p(Y)],$$

$$p(1,1,2) = p(1,2,1) = p(2,1,1)$$

$$= \sum_{y} p(y)^2 (1-f(y)) = E[p(Y) (1-f(Y))]$$

and all strict patterns have unique probability

$$p(1,2,3) = \sum_{y} f(y-1) p(y) (1-f(y)) = E[f(Y-1) (1-f(Y))].$$

Example: Probabilities of GOPs for i. i. d. $Geom(\nu)$ -counts:

 \Rightarrow GOP distribution depends on actual distribution of Y_t ,

so GOP-based test statistics of parametric nature.

Asymptotics for m = 2: see Weiß & Schnurr (2023).

We circumvent parametric nature by

Scheme for bootstrap implementation:

Let Y_1, \ldots, Y_n be a stationary discrete-valued time series.

- 1(a) Compute sample pmf from Y₁,...,Y_n, compute corresponding null distribution p₀ by Propositions.
 (b) Compute estimator p̂ from GOPs derived from Y₁,...,Y_n.
 - (c) Test statistic: distance $d(\hat{\mathbf{p}}, \mathbf{p}_0)$.

2. (...)

Scheme for bootstrap implementation:

Let Y_1, \ldots, Y_n be a stationary discrete-valued time series.

- 1. (...)
- 2. Apply Efron bootstrap to Y_1, \ldots, Y_n :
 - (a) Generate B i.i.d. time series $Y_{b,1}^*, \ldots, Y_{b,n}^*, b = 1, \ldots, B$.
 - (b) Compute $\hat{\mathbf{p}}_b^*$ from GOPs from $Y_{b,1}^*, \ldots, Y_{b,n}^*, b = 1, \ldots, B$.
 - (c) Test statistics (distances) $d(\hat{\mathbf{p}}_1^*, \mathbf{p}_0), \dots, d(\hat{\mathbf{p}}_B^*, \mathbf{p}_0)$.
 - \Rightarrow approximate sample distribution of $d(\hat{\mathbf{p}}, \mathbf{p}_0)$ under null.
- 3. Compute (1α) -quantile of $d(\hat{\mathbf{p}}_1^*, \mathbf{p}_0), \dots, d(\hat{\mathbf{p}}_B^*, \mathbf{p}_0)$, use as critical value for $d(\hat{\mathbf{p}}, \mathbf{p}_0)$ to test i. i. d.-null.

Simulation study in Weiß & Schnurr (2023):

- GOP-tests hold level quite accurately (grouped GOPs) or tend to be conservative (all GOPs).
- Much better power than if using noisy OPs.
- Better power than ACF for nonlinear DGPs,

if contamination by additive outliers,

or if remarkable sample paths (exhibiting zero inflation,

long runs of counts, or cascades of decaying counts).

Weiß & Schnurr (2023): application to

hydrologigal data and infectious disease data.

(G)OPs are well-interpretable, robust, and

flexibly adapted to different types of dependence.

If data continuously distributed, we get non-parametric tests.

Work in progress:

In Weiß & Testik (2023), sequential testing of independence in continuously distributed process (X_t) via non-parametric OP-based EWMA control charts. **Currently:** monitoring of *discrete-valued* processes, parametric EWMA control charts based on GOPs.

Thank You for Your Interest!

Christian H. Weiß

Department of Mathematics & Statistics

Helmut Schmidt University, Hamburg

weissc@hsu-hh.de

Weiß (2022) Non-parametric tests for serial dependence in time series based on asymptotic ... *Chaos* 32(9), 093107.

Weiß & Schnurr (2023) Generalized ordinal patterns in discretevalued time series: ... *Journal of Nonparametric Statistics*, in press.

Bandt (2019) Small order patterns ... Entropy 21, 613.

Bandt & Pompe (2002) Permutation entropy ... Phys Rev L 88, 174102.
Berger et al. (2019) Teaching ordinal patterns ... Entropy 21, 1023.
Bian et al. (2012) Modified permutation ... Phys Rev E 85, 021906.
Elsinger (2010) Independence tests ... Working paper 165, Öst. Nat.bank.
Schnurr & Fischer (2022) Generalized OPs ... CSDA 171, 107472.
Unakafova & Keller (2013) Efficiently meas... Entropy 15, 4392–4415.
Weiß (2018) An Introduction to Discrete-Valued Time Series. Wiley.
Weiß & Testik (2023) Non-param. control ch... Technomet 65, 340–350.