
hpc.bw: An Evaluation of Short-Term Performance
Engineering Projects

Johann Antonio Duffek,

Imane Bechalaoui,

Willi Leinen,

Hauke Preuß,

Simon Schlumbohn,

Yannis Schumann

High Performance Computing
Helmut Schmidt University/

University of the Federal Armed Forces
Hamburg, Germany

duffek@hsu-hh.de

Fabian Dethof,

Sylvia Keßler

Engineering Materials and
Building Preservation

Helmut Schmidt University/
University of the Federal Armed Forces

Hamburg, Germany

fabian.dethof@hsu-hh.de

Marie Rathmann,

Jessica Kleinschmidt,

Alexander Kolling,

Sabine Schmidt-Lauff

Continuing Education and
Lifelong Learning

Helmut Schmidt University/
University of the Federal Armed Forces

Hamburg, Germany

marie.rathmann@hsu-hh.de

Andreas Fink

Business Administration, in
particular Business Informatics

Helmut Schmidt University/
University of the Federal Armed Forces

Hamburg, Germany

Marcus Stiemer

Theorectical Electrical Engineering and
Numerical Simulations

Helmut Schmidt University/
University of the Federal Armed Forces

Hamburg, Germany

Matthias Mayr

Institute for Mathematics and
Computer-Based Simulation

University of the Bundeswehr Munich
Munich, Germany

Philipp Neumann

DESY, IT-Department and University Hamburg
High Performance Computing & Data Science

Hamburg, Germany

Abstract — Increasing amounts of data and simulations in sci-
entific areas enforce the need of improved software performance.
The maintaining scientific staff is often not primarily trained for
this purpose or lacks personnel and time to address software
performance issues.

A particular aim of the dtec.bw-funded project hpc.bw is to
tackle some of these shortcomings. A pillar of the hpc.bw agenda
is the offer of a low-threshold consultancy and development
support focused on performance engineering. This paper provides
an insight on our related activities.

We illustrate the structure of our annual calls for short-
term performance engineering projects, we outline our results at
the example of the performance engineering project ‘benEFIT-
Numerical simulation of non-destructive testing in concrete’, and
we draw a first conclusion on the current procedure.

Index Terms — hpc.bw, HPC, performance engineering, par-
allel I/O, Fortran

I. HPC.BW - MOTIVATION AND INTRODUCTION

The core objective in high performance computing (HPC)

is the development of efficient software, that is often executed

on supercomputers, in order to achieve computations within

reasonable time frames and/or within resource bounds. Some

relevant examples are optimisation problems in logistics and

production, numerical simulations in engineering, or image

recognition/analysis via machine learning with real-time de-

mands for medical diagnostics.
However, software is often not utilising the full potential

of compute resources. Reasons for this are, e.g. limited time

for software optimisations or missing expertise in HPC. This

results in a reduced productivity in the use of digital research

techniques.
Our project hpc.bw aims to strengthen HPC-related research

at the two universities of the Federal Armed Forces and to

enforce the transfer of HPC knowledge across the various

fields. Based on these project activities, hpc.bw strives

1) to strengthen the research and development in respective

research fields,

2) to promote the interdisciplinary exchange between HPC-

related problems,

3) to derive and answer new HPC-related research ques-

tions from the different field specific problems, and

4) to establish a common HPC competence platform.

A key to strengthen research and development lies in per-

formance engineering (PE), i.e. investigating and optimising

programs for (parallel) performance.
In the following, after introducing the key activities of the

project in 2023/2024 in Sec. II, the concept of short-term

dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg

223



performance engineering projects, that have been established

in hpc.bw, is explained in Sec. III. A particular realisation

of this concept is laid out in Sec. IV. We close with a short

summary and outlook to future project activities in Sec. V.

II. HPC.BW: PROJECT ACTIVITIES IN 2023/2024

In the first two years of the hpc.bw project a container-based

HPC centre was installed, including supercomputer HSUper,

communication channels and community-building measures

(such as a multiplicator programme, newsletters, seminar

series “Computation & Data”) were established and training

concepts (such as workshops and performance engineering

projects, cf. Sec. III for the latter) were created. The focus

in the last one and a half years (2023-mid of 2024) was put

on consolidation of these and running research activities (such

as research on HPC for optimisation problems in logistics).
Various groups have adopted to using the HPC system

HSUper, an initial TOP500 supercomputer (i.e. ranked 339

among the 500 fastest supercomputers in the world at the

time of its inauguration). More than 180 users currently have

access to the machine, more than 100 users rely on HSUper

currently in their research and actively submit compute jobs.

This also includes researchers funded directly from hpc.bw,

conducting research on efficiently solving optimisation prob-

lems in logistics. This resulted in a total use of 73% of

the available compute resources, that was measured over the

past months (February–June 2024), demonstrating a currently

well-defined size of the compute system and a functioning

software stack for a wide range of applications (such as from

fluid dynamics, materials science, algorithms research and

numerical mathematics, or optimisation in logistics). To enable

researchers to use HSUper, three workshops were conducted:

two full-day workshops addressing beginners in HPC (held

on 28 Sep 2023 and on 18 Apr 2024 at HSU) as well as one

full-day workshop for more advanced users of HPC resources

(held on 19 Apr 2024 at HSU).
To provide HPC resources also for researchers with less

affinity to supercomputing and computer science in general,

the Interactive Scientific Computing Cloud (ISCC) has been

established in summer 2023. It consists of ten dual-socket

Intel(R) Xeon (R) Platinum 8360Y nodes (which is the same

architecture as used in HSUper) with 256 GB RAM each, as

well as of two more nodes of the same type, but with 1TB

RAM, additional 2TB local scratch storage and 8 NVIDIA

A30 GPUs for more compute-heavy machine learning tasks.

In contrast to HSUper, which runs a current Linux distribution

and relies on job scheduling via SLURM, the ISCC uses a

virtualisation environment built on top of VMware’s vSphere.

This allows users to launch a virtual machine with Windows

or Linux and run it including the entire desktop and GUI

environments on (single) high performance compute nodes.

In the mean time, more than 60 virtual machines have already

been created and are in use.
Moreover, the HPC portal1 has been launched to provide a

virtual competence platform for the identified user groups at

1https://portal.hpc.hsu-hh.de/

the universities at the Federal Armed Forces and beyond. The

platform will be extended in the future with e-learning, more

videos on selected HPC topics and continuous documentation

of the compute platforms (such as HSUper and ISCC).

Moreover, hpc.bw staff actively reached out further to HPC

and education communities: various renowned speakers were

invited to the hpc.bw-empowered seminar series on “Compu-

tation & Data”, the project was represented, amongst others,

at the NHR conference 2023, the Section Conference for

Adult Education 2023 as well as at the ISC HPC congress

2024. From 24-26 June 2024, hpc.bw organised the European

Trilinos User Group Meeting (EuroTUG) at HSU, with ca. 20

participants from more than ten European research institutions.

III. SHORT-TERM PERFORMANCE ENGINEERING

PROJECTS

The project hpc.bw organises short-term performance engi-

neering projects in the form of easily requestable consultancy

on HPC-related questions. Their aim is to provide help and

support to users confronted with software performance issues.

Figure 1 provides a schematic overview to the following

project characterisation.

A. Application Process

Eligible groups for the short-term PE projects are all de-

partments at the Universities of the Federal Armed Forces.

Annually, a call for PE projects is launched that groups can

apply for. The application scheme is straightforward, with

application forms not exceeding 2-3 pages. The application

form asks to characterise

1) the applicant’s research project and its relation to HPC,

2) the existing software to be optimised,

3) the problems faced with the current software,

4) the anticipated gains in performance improvement for

the software, required to answer related research ques-

tions, and

5) the necessary support needed as well as the estimated

project duration.

Overall support must not exceed the equivalent of six person

months of an HPC-affine scientific co-worker from the hpc.bw

project. The applicants are additionally asked to categorise

their HPC-related knowledge into ’no’, ’basic’, ’advanced’, or

’expert’.

This deliberately simple application procedure lowers the

barrier for candidates without prior knowledge in HPC, and it

provides us with a rough overview of the underlying problem

and expected workload.

The applications are internally reviewed by the hpc.bw

multiplicator team, which represents all involved institu-

tions/departments of the Universities of the Federal Armed

Forces, and they are externally reviewed by one more person.

After review, projects are selected, and, if necessary, adapted

in their extent and duration. Table I provides an overview on

the granted projects, their extent, and involved personnel.

dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg

224



FIGURE 1. A SCHEMATIC OVERVIEW OF THE SHORT-TERM PERFORMANCE ENGINEERING PROJECTS OF ’HPC.BW’

TABLE I. Overview on the granted short-term PE projects. Project Count:
total number of supported projects. Granted Person Months: total
number of person months allocated in the respective call. Involved
Staff: number of staff members from hpc.bw and the chair for HPC
at HSU involved in the PE projects

Year Project Count Granted Person Months Involved Staff
2022 7 12 4
2023 4 12 3
2024 6 10 6

B. Project Implementation

Kick-off meetings are scheduled with the applicants of

the accepted projects within a month after the submission

deadline. Their purpose is to

1) introduce the involved personnel to each other,

2) gain a better insight into the outlined problem,

3) understand expectations and fix the scope of the project

work,

4) establish and ask for further required prerequisites (such

as software stacks, source code and compile scripts, test

cases to evaluate performance gains),

5) define the communication channels form of joint project

work (e.g. defining meeting schedules or organising time

line of the project), and to

6) reiterate the project conditions.

The project conditions entail the contributions of material

and abstracts for reports and publications as well as the

acknowledgement of significant contributions.

Our staff – scientific co-workers from the project hpc.bw

and members of the chair for HPC – then proceed to famil-

iarise themselves with the project and work on the defined

problems. A synchronisation is conducted according to the

project nature and according to the preference of the involved

people.

Each project is usually concluded by a spin-off meeting,

presentation, and/or report to transfer our acquired findings to

the project partner. An additional one-page report with a brief

description of the measures and their outcome is written up

by the involved project members to document the results.

Our intention is furthermore to simplify the typically en-

countered problems and to track lessons-learned in order to

reuse them in training materials afterwards.

C. Typical encountered Projects

The short-term PE projects can be usually classified into

two kinds of projects.

a) The classical PE projects.
These are projects requiring the optimisation of some existing

code. An example of such project and its outcome is given in

Sec. IV. Their process is roughly as follows:

1) Request of source code access and local setup of the

project.

2) Familiarisation with the source code and project.

3) Optional further/advanced preparation of the project.

4) Repeated iterations of profiling and adaptations of the

program/source code/software environment.

5) Documentation of the changes and program hand-over.

The ideal outcome is a list of required (or already

completed) program modifications and a measurable out-

come/improvement. These improvements range from negligi-

ble changes (e.g. 5% runtime reduction) to runtime reductions

of over 50%. The encountered problems range from a proper

software setup, over the conscious use of libraries and system

resources, to in-depth PE techniques applied to user-specific

(or even third-party) code such as vectorisation and pipe-

lining.

b) The advisory projects.
These projects have a wide variety of appearances and range

from ’simple on-boarding help’ to use an HPC cluster, over

the setup and use of a particular compute- or data-intensive

software, to the full build of a proof-of-concept. These are

generally handed in by beginners.

The programming languages covered in our projects so far

include, amongst others, Python, Matlab, Fortran, and C++
with project sizes from 400 up to 75,000 lines of code.

IV. BENEFIT

The project ’benEFIT - Numerical simulation of non-

destructive testing of concrete’ is one of the classical PE

dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg

225



projects (see Sec. III-C) and was granted three person months

of attention on our first short-term PE project call. Its subject

was a self-written Fortran code of approximately 5,000 lines

of code.

Its purpose is to simulate the elastic wave propagation dur-

ing two different non-destructive testing methods (ultrasonic

testing and impact echo testing). These methods are used to

assess the condition of concrete structures, such as buildings

or bridges, and detect possible defects inside the inspected

concrete structures. The respective software elastodynamic

finite integration technique (EFIT) utilises a finite difference

staggered-grid method which is able to handle strongly het-

erogeneous domains more robustly.

(a) homogeneous setup (b) simulation step of homog.
setup

(c) heterogeneous setup (d) simulation step of heter. setup

FIGURE 2. EXAMPLE SIMULATIONS CONDUCTED WITH BENEFIT

Figure 2 depicts two example calculations conducted with

EFIT. Figure 2(a)-(b) depict a slice of a homogeneous simu-

lation with embedded steel reinforcement (yellow point) and

easily recognisable wave reflections. Figure 2(c)-(d) depict a

heterogeneous - more realistic - scenario with a - therefore -

very noisy response. EFIT is used to simulate such ensembles

to examine the detectability of defects or other features in

concrete using the two aforementioned non-destructive testing

methods [1].

As the introduction of absorbing boundaries, here imple-

mented with perfectly matched layers (PMLs), requires the

use of many additional variables, two basic versions of the

EFIT code exist (with and without PML).

A. Initial State and Project Aim

Such simulations require fine domain resolutions due to

the heterogeneous material and many time steps needed for

the comparatively long simulated time interval, especially for

impact echo testing, which results in high memory and runtime

demands. Those had been already addressed by a distributed-

memory parallelisation with MPI (Message Passing Interface).

The declared project aim was the further reduction of runtime

and memory demands of EFIT, as well as the parallelisation

of a separated accompanying domain creation tool.

B. Initial Steps and Preparation

Initial steps involved the collapsing of several hard-coded

program versions into one source code version, modifiable

via configuration parameters. This reduced the lines of code

considerably (see Fig. 3 baseline). A build setup via GNU

Make was introduced to facilitate the build of the different

program flavours and to incorporate instrumentation with

profiling tools.

Those and all further changes were tracked and documented

with the versioning system Git. This had the aim to acquaint

our project partner with such a system and to separate the steps

into comprehensible changes and document-able iterations

(without the need of explicit version copies).

in
iti

al
sta

te

bas
eli

ne

cle
an

-u
p

M
PI cle

an
-u

p

M
PI sli

ce
s

XM
L

co
nfig

ed
ge

re
fa

cto
r

Fortr
an

m
odules

3D
M

PI sp
lit

s

m
er

ged
lo

ops

re
duce

d
div

isi
ons

co
lla

pse
d

in
fo

re
sta

rt
m

ec
han

ics

netC
DF

su
pport

0

1 000

2 000

3 000

4 000

5 000

li
n

es
o

f
co

d
e

(-
)

lines of code

FIGURE 3. THE LINES OF CODE AT MAJOR PROJECT MILESTONES

C. Initial Performance Engineering Process

(a) trace excerpt

(b) accumulated time values of the trace excerpt

FIGURE 4. TRACING RESULTS OF ONE PROGRAM CYCLE

The previously introduced instrumentation was then utilised

to acquire a deeper insight of the time-consuming program

routines. Figure 4 displays the excerpt of one sampled program

cycle (4 MPI processes) acquired via Intel® Trace Analyzer

and Collector [2]. The two visible sub-compute steps (green

and blue) are encased and interrupted by MPI information

interchange steps (red). The table lists the accumulated time

of the shown routines (TSelf).

dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg

226



bas
eli

ne

cle
an

-u
p

M
PI cle

an
-u

p

M
PI sli

ce
s

XM
L

co
nfig

ed
ge

re
fa

cto
r

Fortr
an

m
odules

3D
M

PI sp
lit

s

m
er

ged
lo

ops

re
duce

d
div

isi
ons

co
lla

pse
d

in
fo

re
sta

rt
m

ec
han

ics

netC
DF

su
pport

0

20

40

60

80

100

re
la

ti
v
e

ru
n

ti
m

e
(%

)

no PML

PML

FIGURE 5. PROGRAM RUNTIME AT THE MAJOR PROJECT ITERATIONS AV-
ERAGED OVER THREE RUNS (WHISKERS DENOTE MIN/MAX VAL-
UES)

(a) trace excerpt before the change of MPI synchronisation

(b) trace excerpt after change the of MPI synchronisation

FIGURE 6. TRACE EXCERPT FOR THE NO PML PROGRAM VERSION, BE-
FORE AND AFTER THE STEP MPI SLICES

The relatively big amount of time spent in the update

routines led to the decision to optimise these routines. Several

attempts to apply loop fusion (the merging of different loops)

and loop nesting optimisation (the blocking of n-dimensional

loops to optimise memory access) led to no immediate signif-

icant improvement.

A second approach initiated a structural clean-up of the

source code with a simplification of the MPI information

exchange. These preceding steps enabled us to easily introduce

a proper MPI information exchange for n-dimensional arrays

leading to a noticeable runtime reduction (see Fig. 5 up to

step MPI slices). This reduced runtime can be attributed to

the reduction of MPI exchange operations and had a different

impact on our two test cases (with/without PML). This is due

to an increased share of computation to information exchange

for the EFIT feature PML. The reduction and effect of this

change is visualised in Fig. 6 (the black lines between the

bars represent the exchange operations).

D. Interlude

We recommended and implemented an XML-based simula-

tion configuration in order to avoid hard-coded program vari-

ants and program recompilation. This step has been undertaken

to facilitate the use of EFIT within an extended/automated

context, with the benefit of reproducible runs due to the sep-

aration of a static/fixed program from input and configuration

files (simulation reproduction possible via configuration and

input file). The mature Fortran XML-library TIXI [3] has been

chosen as backbone for this implementation.

The changes encompassed refactoring (restructuring) steps

of the source code and the transitioning to a more modern

Fortran syntax. These changes were undertaken for the sake

of a better clarity of the code base and led therefore to no

significant performance changes.

The previous steps facilitated the introduction of a gener-

alised domain splitting, which enabled us to choose a more

cache-friendly domain splitting scheme (splitting along the

dimension of the largest array stride). This led to an additional

performance improvement (step 3D MPI splits).

E. Performance Engineering Process

A second attempt to merge simulation loops resulted in

a very noticeable performance gain (step merged loops).

This is due to a more informed approach about additional

circumvention of intermediate variables. The results are a

lower memory footprint, better cache utilisation (memory

utilisation), and therefore an improved runtime.

Further optimisations included the avoidance of division

operations by re-using results from prior calculations, and the

reduction of artificially inflated information. The later change

resulted in further significant runtime improvements for the

PML case. This case requires more cache accesses and profits

therefore from a reduced data volume. The division-reduction

led to no noticeable improvement for the PML case as due

to more prevalent memory instructions which masked this

improvement. The less memory hungry case no PML in turn

profits slightly.

F. Finishing Touches

A remark from our project partner regarding very long

runtimes led to the implementation of a check-pointing mech-

anism with support of netCDF files [4] to EFIT.

This check-pointing enables the full dump of the state in a

time step in the case of an externally triggered signal. This is

very useful on compute job scheduled (i.e. Slurm managed)

machines. It avoids the necessity to write frequent simulation

dumps to the local storage, effectively reducing the potential

runtime for cases which require a sparse recording of domain

states.

NetCDF reduces the data written from and to disk even

further. The ASCII based data-files formerly used by EFIT

inflated the required data artificially (besides enforcing a text

to data conversion during a read).

The impact of those changes had not been evaluated with

the provided test cases. But measurements on in-production

problems provided significant runtime improvements from e.g.

72h down to 15h. These effects originated primarily in the

avoided heavy use of hard drive reads and writes (the file

sizes were reduced by approximately 70%).

The project itself was concluded with a report providing

an overview on the changes and their motivation. Additional

hints on further steps such as MPI communication-hiding were

provided as well.

Work on the domain generation program was skipped due

to time constraints.

dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg

227



V. CONCLUSIONS AND OUTLOOK

In this article, we provided an update on the project status of

hpc.bw and detailed the short-term performance engineering

projects, that are being carried out within the scope of our

project. In particular, we demonstrated how hpc.bw can enable

more efficient research at the example of the PE project

benEFIT.

While benEFIT can be considered a success story, the over-

all chances to improve code performance depends on various

aspects, ranging from code base and quality over program

complexity and problem setting to be solved to actual skills

available in the team. While the latter can, of course, built

up over time, the structure of performance engineering project

calls does not put any constraints on software (open-source,

closed-source, quality of documentation, etc.), programming

language, and so forth. While this allows us to support an as

heterogeneous HPC user group as possible, it increases the

need for a wide range of expertise in the PE project team.

Therefore, other project activities on building up an actual

competence platform with online portal, documentation, and

learning material is essential to help users directly and leverage

PE projects for individual needs.

Another aspect to critically keep track of in the future is

the overall time frame dedicated to the projects. Designed as

short-term projects, first statistics have shown that the entire

work time from hpc.bw PE project staff is distributed to ca.

70% on familiarisation with the considered software/ problem

and its preparation for the actual performance engineering, to

10% on project result reporting and only to ca. 20% on actual

performance optimisation tasks. The longer a project, the

better the ratio of familiarisation-to-optimisation time becomes

and the smaller the number of potentially supportable projects

becomes (due to limits in the human resources). And the

more researchers are already well-educated on programming

(e.g. writing modular, well-understandable code with extensive

documentation or using code versioning systems such as

Git), the smaller the familiarisation phase typically becomes.

Careful consideration of these aspects will be required to be

monitored in the future.

ACKNOWLEDGMENT

hpc.bw is funded by dtec.bw – Digitalization and Technol-

ogy Research Center of the Bundeswehr. dtec.bw is funded by

the European Union – NextGenerationEU.

REFERENCES

[1] F. Dethof & S. Keßler, “Design of Concrete Mock-Ups with Complex
Defect Scenarios Using Numerical Simulations”, Journal of Nondestruc-
tive Evaluation, vol. 43(59), 2024, doi: 10.1007/s10921-024-01074-9.

[2] “Intel® Trace Analyzer and Collector 2022.1.0”, Intel®, 2022.
[3] M. Siggel et al., “TIXI 3.3.0”, DLR, 2022, available: github.com/DLR-

SC/tixi.
[4] Unidata, “NetCDF-Fortran 4.6.1”, UCAR/Unidata Program Center,

2023, doi: 10.5065/D6H70CW6.

dtec.bw-Beiträge der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg

228




