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• Research Topics Photonics
– All optical signal processing

– Optical Equalization

– Microwave Photonics 

– Optical Performance Monitoring

– Coherent Receivers for Quantum Communication 

– Machine Learning in Photonics

– Optical Sensing

• Research Topics RF & Microwaves
– Radar on / with ships

– Antenna Design onboard ships
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Research Projects:
• SASER Safe and Secure European Routing (BMBF flagship project)

– Coherent systems for secure optical communication & Quantum Key distribution

• Optical Biosensor using Surface Plasmon Resonance
– Sensitive detection of specific biochemical molecules (Proteins, Enzymes, DNA …)

• Optical Signal Processing Silicon Photonics
– Optical equalizer and Fourier Transformation for Terabit/s communication systems

• Radio over Fiber systems for Multigigabit/s wireless Systems
– Optical generation and distribution of Multigigabit/s mmwave signals 

• Optical Monitoring in Next Generation Optical Access Networks
– Health monitoring of the optical fiber infrastructure in NGOA with >1024 customers

• Distributed Shipborne Over-The-Horizon-Radar
– Simulations including environmental influences on the radar performance.

• Coexistence of windmills and digital radio links
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Network security on the physical layer
Quantum Key Distribution

• Coherent Systems for Key Generation for Secure Optical 
Communication
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Experiment
Simulation - linewidth 250 kHz
Simulation - linewidth 5 kHz

Experimental Results for
heterodyne CV-QKD with QPSK
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Surface Plasmon Resonance Biosensor

• Miniaturized optical probe with power based
readout

• Sensing in minimal volumes (< 1l) of
biochemical analyts for specific:
– Proteins, Enzymes, DNA…

• Without bulky additional equipment (fluidics, 
spectrometer, white light sources)
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Nonlinear Fouriertransformation

• Proposed optical communication system based on Nonlinear Fourier 
Transform

• First results will be presented at ECOC 2016

• M. I. Yousefi and F. R. Kschischang, “Information Transmission using the Nonlinear Fourier Transform, Part I-III: 
Spectrum Modulation,” Transaction of information theory, vol. 60, no. 7, pp. 4312-4368, 2014
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Optical Fourier Transformation for 
Terabit/s communication systems

• Optical OFDM Demultiplexer in Silicon Photonics
– Waveguide Layout of fabricated devices

– Successful demodulation of 14 Gbaud QPSK signals (BER < 10-4) 
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Optical Fourier Transformation 2nd Generation

• Realised with IHP‘s nanophotonic technology

L. Zimmermann, PIER 2014 [invited]

• 220-nm thick Si over 2-μm thick buried oxide
• 248 nm Deep Ultraviolet lithography (DUV)
• Plasma source etching
• Al-based heaters as phase-shifters
• Bending radius R ~ 5 μm

Chip size: 15 mm2

Low output power  low signal-to-noise ratio
Ultra-sensitive measurements of amplitude and phase noise

rate equations 

[3] M. Piels, JLT, 2015DTU Fotonik, Technical University of Denmark

Machine learning in Photonics
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Nanophotonics: low power laser characterization3

• Learning static and dynamic laser parameters from measurements  

• Allows for inclusion of laser physics into estimation algorithms



Frequency noise spectra nanolaser3
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Reference and Lorentzian methods do not provide accurate FM noise 
SemiConductor Laser (SCL) Bayesian filtering employs rate equations

rate equations 
[3] M. Piels, JLT, 2015DTU Fotonik, Technical University of Denmark
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Gigabit/s Wireless Millimeter Wave Communication

• New services like HDTV require high data rates

• Short range communication (< 10m)

• Optical distribution and generation of the microwave carrier 
between 50 GHz and 300 GHz using optical frequency combs 

• Successful error-free 

wireless transmission 

of > 10 Gbit/s on a 

100 GHz carrier

• First 10Gbit/s wireless

transmission in 2007
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Optical Monitoring in Next Generation 
Optical Access Networks

• Health monitoring of the optical fiber infrastructure in NGOA with :
– >1024 customers

– 100 km fiber length

High resolution coherent
FMCW System

Interference with radars and radio links due to reflections/
scattering and diffraction (Micro-Doppler effect in backscatter
region and frequency deviation in forward scatter region).
Safeguard zone dominated by diffraction.

 Development of 2D Fresnel-Kirchhof Diffraction model for WT 
forward scattering (fast numerical integration using Babinets
principle) including effect of real ground

 Calculation of dynamic amplitude and phase modulation, 
Doppler deviation and time-frequency spectrum (point-to-point 
radio link and radar signals)

 Interference for communication links with higher order
modulation schemes:
 Bit Error Rate (BER)
 Error vector magnitude and constellation diagram spread
 OFDM orthogonality

Coexistance of Windpower Parks 
and Point-to-Point Radio Links

Hochfrequenztechnik – PD Dr.-Ing. Th. Fickenscher

Time-Frequency Spectrum

Constellation Diagram

 Photonics & RF



 Colocated MIMO Radar with Linear Sparse Receive ARRAY
• Suppression of grating lobes
• Long CIT solved by MIMO BF
• Beat frequency division (FMCW)
• Fast horizontal displacement 

and tilt angle compensation 

 Sea Clutter Canceller BF
• Superior to STAP
• Noise reduction in all RD cells
• Clutter statistics not required

 Correlation Detector
• Superior to CFAR
• Detection in clutter dominated region
• Power thresholding not required
• Detection up to 120 km with 4 W Tx power

Distributed Shipborne OTHR

Naval 
Formation 
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Background:
The lifetime of the relocatable radar is going to be further
extended. The performance of the phase shifters of the
antenna array is crucial for the operability of the radar. To
date the functionality of the phase shifters can only be
tested when disassembled or by performing test flights.

Project task:
Verification of individual phase shifter performance with
antenna array assembled. Development of automated PC
controlled measuring equipment.

Phased Array Verification
Precision Approach Radar PAR-80

Hochfrequenztechnik – PD Dr.-Ing. Th. Fickenscher

Funding:
Bundesamt für Wehrtechnik und Beschaffung, Koblenz
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Safe and Secure European Routing

• BMBF Project SASER 

• Network security on the physical layer
Quantum Key Distribution

• Coherent Systems for Key Generation for Secure Optical 
Communication

• Coherent Systems I
– BPSK realization of a B 92 protocol

– LO transmission with TDM & POL multiplex

• Coherent Systems II
– M-PSK modulation

– LO at the receiver site

– LO free running

Coherent Systems for Key Generation I

Secure communications using a quantum channel 

Information advantage based on quantum properties
• Non-orthogonality of coherent states (Heisenberg uncertainty)

• Single Photon or Entanglement

A key is not transmitted but generated after the quantum state 
transmission by interactive reconciliation via the classical channel 

quantum state transmission

error correction

privacy amplification

use key to encrypt
classical channel

25.8.2017 Photonics & RF

G. van Assche, “Quantum-Cryptography and Secret-Key Distillation,” Cambridge University Press, 2006 



Coherent Technologies:

State of the Art QKD System B92
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Rep. rate: 5 MHz
Pulse width 17 ns
Extinction: >25 dB

output

S   SER
ADVAntage-NET

P. Jouguet et. al.,,Nature Photonics, 2013 
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Error Correction CASCADE Protocol

P. W. Shor and J. Preskill, Simple Proof of Security of the BB84 
Quantum Key Distribution Protocol, Phys. Rev. Lett., vol. 85, pp. 
441-444, 05/2000
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CASCADE Protocol –Simulation-

• Simulation of CASCADE modules for Alice and Bob via a reflected 
Ethernet Connection

JESUS MARTINEZ-MATEO: “DEMYSTIFYING THE INFORMATION RECONCILIATION PROTOCOL CASCADE”
Quantum Information and Computation, Vol. 15, No. 5&6 (2015) 0453

State of the Art QKD System B 92
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• Remote heterodyne for relaxing the requirement on the coherence of the 
laser field

• Power of the remote Local Oscillator (LO) given by the shot noise limit of 
the coherent receiver

• Manage crosstalk issues between LO and quantum signal with 
polarization and time division multiplex

• Error correction with Cascade
• Can we move the LO to the receiver?

Alice Bob output

S   SER
ADVAntage-NET



Here: transmission of faint   - PSK modulated laser pulses

Attenuation to enhance quantum uncertainty (non-orthogonality)

Coherent Technologies II:

M-PSK Transmission

phase-modulation

Bob

 
 
  : channel transmittance

quantum regime
classical regime
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Mutual Information between Alice and Bob

Hard decision case
Bob decides immediately  

Soft decision case
Bob keeps continuous value  

-PSK

25.8.2017 Photonics & RF

S   SER
ADVAntage-NET
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M-PSK scheme system proposal and experiment
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Experimental Results

Direct evaluation of  
~2 dB penalty

• quantum efficiency (~1 dB)

• thermal noise (~0.5 dB)

• lowest power 

0,1 photons/symbol

Experimental raw key-rate
• feed back results to

num. optimization

But: penalty can serve
as worst-case estimator
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4-PSK

8-PSK

16-PSK

NRx: number of photons per symbol

CR = 18 dB
L = 25 km

1 Photon



Co-existence of quantum channel and

WDM channel(s)

• No influence to be seen with one strong interferer
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Crosstalk by classical Interferers
 Raman scattering
 XPM
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Conclusion & Outlook

•   -PSK scheme for secure key distribution introduced
• Eve uses perfect coherent Rx

• Eve gets all the channel loss

• Theoretical Key-rates calculated
• >100 km possible at reasonable key-rates (  bit/symbol)

• 16-PSK seems a good choice

• Realization possible with standard components!

• Further investigation:  coexistence in a multichannel environment
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