Shore Livecams: A Maritime Dataset for Deep
Learning based Object Detection

Daniel Ahlers
Dept. of Signal Proc. and Comm.
Helmut Schmidt University
Hamburg, Germany
daniel.ahlers @hsu-hh.de

Purbaditya Bhattacharya
Dept. of Signal Proc. and Comm.
Helmut Schmidt University
Hamburg, Germany
bhattacp@hsu-hh.de

Patrick Nowak
Dept. of Signal Proc. and Comm.
Helmut Schmidt University
Hamburg, Germany
patrick.nowak @hsu-hh.de

Udo Zblzer
Dept. of Signal Proc. and Comm.
Helmut Schmidt University

Hamburg, Germany
zoelzer @hsu-hh.de

Abstract—This paper introduces a maritime dataset for object
detection named as the shore livecam dataset. The dataset is
a collection of high definition (HD), full high deifinition (FHD),
ultra high definition (UHD) images captured from live video feeds
recorded accross various port based areas of Germany. These
images contain multiple instances of objects which are primarily
classified into three different classes and annotated accordingly.
The widely varying object sizes contribute to the uniqueness of
this dataset whose content is thoroughly analysed and described.
Finally, a selection of deep learning models is used on this dataset
for evaluation.

Index Terms—Maritime dataset, object detection, deep learn-
ing, convolutional neural network, image processing

I. INTRODUCTION

The development of surveillance systems with cameras
towards autonomous vision systems is going on rapidly. With
deep learning and convolutional neural networks (CNN) a
breakthrough has been achieved in recent years. This has led
to an explosion in the field of object detection and machine
learning. But at the core of these technologies an incredible
amount of data is needed. In the domain of object detection,
among others the datasets of PASCAL VOC [?], ImageNet [?],
COCO [?], Open Images [?] and VisDrone [?] are jointly
responsible for the success and still set the benchmarks for
new object detectors today to compare against. However,
to achieve satisfying results on more specific tasks a well
picked and prepared dataset is needed. Our task is to detect
all kind of moving vessels in the maritime environment as
well as humans to automate surveillance tasks by creating
notifications. It could also be used for collision avoidance
for water transport and identification for vessels which are
not equipped with Automatic Identification System (AIS)
transceivers. Datasets that are closes to our task and created in
a maritime environment are the Singapore Maritime Dataset
[?], that solely contains boats, and the dataset SeaDroneSee [?]
that is focusing more on search and rescue with drone videos.
Therefore such datasets do not completely represent the object
classes required for our task. This is why an own dataset is

created, named “Shore livecams”, which can be used as a
benchmark on real world images in the maritime environment.

Special characteristics of this dataset are:

o Instead of capturing the images or using images from
image libraries, public livestreaming Internet Protocol
(IP) cameras are used.

o The number of annotated objects per image is very high.

o The range in size of the annotated objects is very large
and there is a high number of very small objects.

This paper first explains the method used for data collection
and the annotation process by addressing the challenges that
came with it. In the second section, the dataset will be analysed
by object count, size and distribution, followed by a section
where the dataset is split and trained with different object
detectors. There, the results are discussed based on the mean
average precision (MAP) metric. Finally, the findings are
concluded and possibilities for improving the results in the
future are discussed.

II. DATASET COLLECTION AND LABELLING

To collect real world images quickly, on a variety of loca-
tions at different daytimes and weather conditions, public IP
camera streams are chosen, that are often used by municipality,
cities, or companies as part of their external presentation. The
cameras are in operation 24/7, close to the environment we
are looking for (harbour and sea), and most are pan-tilt-zoom
(PTZ) cameras so they also move around to different areas.
The cameras used are positioned at the North Sea, Baltic Sea
and Lake Constance. To record the camera streams a recording
software is developed with python that is based on FFmpeg
[?]. Ten IP cameras streams are recorded from 16.07.2022 till
11.08.2022. The streams are provided as H.264 HTTP Live
Streaming (HLS) video streams with bit rates between 750
and 12000 kbit/s and resolutions of 720p, 1080p and 2160p
at mostly 25fps. So they are very heavily compressed to
get transmitted over the internet. One stream was offline and
only showed a static image, but in total 7.52 TB of video are

recorded during this period. The videos are stored in half hour
video snippets, and for the dataset an arbitrary single image
is extracted per video clip. After removing the images during
the night time, around 30 images per day per video stream are
taken.

Because the labelling is the most time consuming task and
by reviewing the recordings, only three days are labelled in
order to reduce the redundancy of the same scenery. The
labelling is done by hand using the software labellmg [1]. The
large difference in the scenery and therefore in the number of
objects per image made it impossible to estimate the time to
label an image in advance.

After training an object detector and testing it on the dataset,
several objects are found by the object detector that weren’t
labelled by hand, resulting in worse results. Therefore, the
predictions of the detector are exported and combined with the
ground truth labels in order to generate updated annotations.
These annotations are checked by hand and wrong detections
are removed. Additionally, labels of objects that are still
missing are appended. In this way, the number of labels is
increased from 6821 to 9243 labels. (see Table I).

In Fig. 1, three examples are displayed to show the diversity
of the dataset. In Fig. 1(a), parts of the image have been
enlarged to make the very small objects visible. In this
image, the harbour is quite far away, which is why all three
object classes have similarly sized bounding boxes. Contrarily,
Fig. 1(b) shows a very large ship object. The human object can
barely be seen in the centre of the image. Another example
of small objects in a far distance at the horizon level is
represented in Fig. 1(c).

III. DATASET ANALYSIS

To get a better understanding of the dataset different python
scripts are used, the software COCO-Dataset-Explorer [2] is
extended to our needs and Matlab scripts are created for a
better visualisation.

As can be seen in Table I the dataset consists of 525 images,
which are separated in 392 at 1080p, 116 at 720p, and 17 at
3840p. All images have an aspect ratio of 16:9. In total there
are 9243 objects, which results in 17.6 objects per image on
average. The object classes are relatively evenly distributed
showing that the set of IP cameras was well picked. In detail,
32.9 % of the objects are humans, 36.6 % are sea vessels, like
cargo ships, cruise ships, small boats and sailboats. The rest
of the objects (30.5 %) are land vehicles, mostly cars but also
some trucks, motorcycle and exotic vehicles like excavators.

In Fig.2, the number of objects in every image is plotted,
subdivided by the object classes. The images are sorted by the
nine camera streams and by time and day. The figure shows
that in some camera streams there are a lot more objects than
in other streams due to the different scenery. In the first camera
stream (image id: 1-68), also shown in Fig. 1(a), the coast is
dominant in the image with a parking space, the beach and a
harbour. This results in a high number of objects per image
especially of human and land objects. The second peak of
objects in image id 427 to 443 can also be traced back to a

(b) Scene combining large and small objects

(c) Scene with small ships at the horizon

Fig. 1: Exemplary images of the dataset with bounding boxes
for human (red), land (green), and sea (blue).

TABLE I: Number of images, objects and objects per class
before and after verification and analysed for small (< 0.33 %)
and medium + large (> 0.33 %) objects

images objects human land sea

Manually labelled 511 6821 2099 2417 2305
CNN + Manually corrected 525 9243 2821 3378 3044
Small 503 8726 2818 3287 2621

Medium + large 209 517 3 91 423

‘\UU'

count

0

il I.n||||'|l-||\ ol e bl g bt hh
300 400

category_name
M human
W and
| W sea

IH
| |||
I
| H |h.||.|....|...
500

image_id

Fig. 2: Annotations per images subdivided by the object classes.

harbour and a parking space in the scenery of this camera. The
different amount of objects within camera streams results of
the different times of day, with less activity in the morning and
evening hour, but also because the cameras are not static and
the image section differs between images. The camera streams
with image id 287 to 348 and 481 to 525 contain almost only
sea objects. This also results in the scenery. An example of
the last stream can also be seen in Fig. 1(c).

To get a better understanding of the challenges for an object
detector it is crucial to analyse the size of the objects. To
make it comparable across the different image resolutions we
choose to use the area of an object relative to the size of the
image. This is also beneficial for the quality analysis of an
object detector because the images are normally resized to the
input size of the convolutional neuronal network. Our splitting
between small and large objects is based on the COCO [3]
metric, which uses absolute pixel values. The median image
size in COCO is 640 x 480. Converting the absolute pixel sizes
to relative ones results in less than 0.33 % for small objects,
greater than 3 % for large objects, in-between objects are of
medium size. For comparison, the white boxes in Fig. 1(a)
showing the enlarged areas have a size of 0.42 %. On average,
the objects in the dataset have a size of 0.3 %. The average size
per class are 0.84 % for sea objects, 0.05 % for land objects and
0.01 % for human objects. Table I also shows the distribution
for small objects compared to medium + large ones. Because
less than 6 % of objects where of size medium and large, both
are combined. After splitting the objects in these two groups, it
can be concluded, as expected, human objects are small, land
objects are larger, and sea objects are huge. In total, there are
a lot of very small objects in this dataset.

After analysing the amount and size of the objects, a closer
look at the distribution of the objects in the images is taken.
To visualize this, heatmaps are created showing all object
annotations in one singe image depicted in Fig. 3 subdivided
by classes. In Fig. 3(a), it can be seen that human objects are
very small and therefore their bounding boxes do not overlap
much. They accrue mostly in the lower half of the images,
this can be explained by the fact that people only walk below
the horizon level. This also applies to the land objects in
Fig.3(b), with the difference that the objects are larger and
a few dominant objects are in the centre in some images. The
hotspot at the lower left is a parking space in the foreground
on one camera stream. In contrast, the sea objects are located

everywhere on the image shown in Fig. 3(c), with a dominance
at the centre line which coincides with the horizon in a lot of
images. An example is shown in Fig. 1(c).

IV. DEEP LEARNING BASED OBJECT DETECTION

In this section, the dataset is prepared in order to train
with different deep learning models. To train the models, two
different dataset types are prepared. The first approach is to
split the dataset into training and test images based on the
camera streams. Images captured by six cameras are selected
for training while the remaining cameras are selected for
testing. The split is done in such a way that the distribution
of objects from different classes does not differ massively in
the training or test sets. However, it is possible that objects
of certain dimensions are less frequent in either of the sets.
Table II shows the corresponding split across all classes (AlIC),
where almost 75 % of the images are selected for training
while the remaining images are used for testing.

The second approach to dataset preparation is to split the
dataset based on the date of video recording. Images captured
on two days are used for training while the images captured
on the remaining day are used for testing. Such a split ensures
that images from all cameras are included in both of training
and test set. Table II shows the corresponding distribution of
data (AlI®), where nearly 75% of the images are used for
training. This approach was also used to analyze the adaption
of an object detector solely trained on small objects (SmallP)
and another object detector solely trained on large objects
(LargeP), to observe the difference in performance. While the
number of training and test images corresponding to small
objects is quite similar to that of all objects, the corresponding
numbers are reduced in case of large objects.

Three deep learning models from the YOLO family -
YOLOVS [4], YOLOvV6 [5], and YOLOV7 [6] are used in the
evaluation. The models are very similar in architecture contain-
ing a backbone, neck, and a head structure. The backbone is a
pyramidal structure which produces feature maps of multiple
dimensions to generate multiresolution contexts. The neck of
such architectures contains bottom up and top down structures.
It is responsible for the combination of low-level structural
features and high level semantic features generated in the
backbone. The features from the branches of the neck are
processed further in the head and are split into a classification
and a regression branch. At the end of these branches the

'S
Frequency of occurrence

(a) Human objects

Frequency of occurrence

(b) Land objects

80

60

40

Frequency of occurrence

20

(c) Sea objects

Fig. 3: Heatmap of the distribution of the objects in the image.
Black denotes areas with no object.

TABLE II: Number of images, objects and objects per class
for different train test splitting scenarios. ¢ denotes train and
test split by camera and P denotes train and test split by day.

images objects human land sea

AIIC train 392 6495 2004 2418 2073
test 133 2748 817 960 971

AlIP train 394 5643 1624 1976 2043
test 131 3600 1197 1402 1001

Small® train 376 5252 1621 1903 1728
test 127 3474 1197 1384 893

LareeP train 158 391 3 73 315
7 st 51 126 0o 18 108

final features are sent to the corresponding loss layers for
error minimization during training. However, certain individual
modules are different between the three models which result
in a difference in their performances.

YOLOVS uses the CSPDarknet53 [?] as its backbone -
a variation of the Darknet structure introduced in YOLO.
On the other hand, YOLOV6 uses an EfficientRep backbone
[?], which contains re-parametrizable modules for an efficient
inference. Such modules are also present throughout the neck
of YOLOv6. YOLOV7 also uses efficient re-parametrizable
modules in multiple forms. Additionally, it employs efficient
training methods where model weights are averaged across
multiple training runs or across multiple epochs to improve
its generalization capability.

The pre-trained models are initially retrained on the dataset
denoted by AlI€ for the input resolutions of 1280 x 1280 and
1920 x 1920, separately. The corresponding results on the test
dataset are provided in Table III where the mean average
precision (MAPIOU:O'5 , MAPIOU:O'S:O'%) values are used as
performance metrics. The results indicate that a higher input
resolution produces better scores likely due to increment in
dimensions of the small objects. It can also be seen that
YOLOvV6 outperforms the other networks in terms of MAP
scores but is slower than YOLOV7. Generally, the MAP
scores are quite low which can be attributed to the large
difference in scenery between cameras, where certain objects
and backgrounds in the test dataset are not present in the
training set. The models are then trained on the dataset AlI°
where images from all cameras are present in both of training
and test sets. From the results in Table III, an improvement in
MAP scores can be seen with respect to the previous results,
across all models. An example of detection by YOLOvV6 on
a test image from AlIC is shown in Fig.4a and the example
on the same image from AlIP is shown in Fig. 4b, where the
detection performance is relatively better.

In spite of the homogeneity in dataset distribution across
training and test datasets the scores have not improved mas-
sively. Hence, the models are trained separately on images
containing only the small objects and images containing only
large objects as defined previously. The YOLO models use
an algorithm to find the initial anchor boxes based on the
distribution of object sizes in the datasets. It is usually difficult
to define a finite number of initial anchor boxes that range
from a very small value to a very large value and make them
converge to all kinds of solutions. A separation of objects
based on size makes the individual distributions narrower. It
was however observed that the algorithm still struggled to fit
to the dataset containing only small objects. The results are
shown in Table III as well. The performance of the models
on the test dataset of LargeP is much improved compared to
the test set of AlIP, while the performance on the test set of
Small® is comparatively worse. This is primarily attributed to
the resolution of small objects which result in low detection
confidence scores. Lower values of confidence threshold result
in many false positives in the case of small objects. As for the
models, YOLOv6 and YOLOV7 perform better than YOLOVS,

TABLE III: MAP results of different object detection networks. *¢ denotes train and test split by camera and *P denotes train

and test split by day

Input MAP!0U=05:005:0.95 MAP®3 Average Duration (ms)
Model Lt

FESOMHON A AP Small® LargeP AIIC AP Small® Large? Proc. NMS Total

YOLO-vSm6 (35.30M) 1280 x 1280 0.065 0.131 0.096 0.451 0.152 0.303 0.242 0.655 27 13 40
1920 x 1920 0.084 0.169 0.114 0.455 0.202 0.381 0.311 0.746 55 80 135

YOLO-v6m6 (79.53M) 1280 x 1280 0.094 0.178 0.154 0.567 0.202 0.381 0.339 0.765 34 115 149
1920 x 1920 0.157 0.221 0.211 0.511 0.308 0.441 0.442 0.718 63 147 210

YOLO-vTW6 (80.94M) 1280 x 1280 0.078 0.154 0.103 0.533 0.177 0.369 0.279 0.763 26 2 28
1920 x 1920 0.109 0.210 0.152 0.538 0.259 0.461 0.380 0.785 33 3 36

(b) Detection by YOLOV6 trained on AlP

Fig. 4: Exemplary image from the AlIC and AIIP test dataset
with detection by YOLOV6 denoted in green and ground truth
denoted by the red boxes.

while YOLOV7 results in faster inference.

Some examples of object detection by the models on a set
of image snippets from the test dataset of AlI® are shown in
Fig.5. The image snippets shown in the figure are cropped
from 1920 x 1920 images, where a red box denotes a ground
truth object and a green box with confidence score denotes a
detection. The first row of the image shows detection examples
of land objects. It can be seen from the example that YOLOv5S

is unable to detect two objects which are indeed relatively
difficult. YOLOV6 and YOLOV7 are able to detect all objects
in the particular section of the image. Additionally, YOLOvV5
and YOLOVG6 also detect an object which is not labelled as a
land object. The second row of Fig. 5 shows a cropped section
of a test image of small sea objects. In this example, the
performance of the models is very similar. All of the models
are unable to detect a couple of instances of a boat, while
YOLOVS5 and YOLOv6 make an additional detection which
is not labelled. The third row of the figure shows an image
containing mostly humans as the object of interest. Similar
to the above examples, the models are able to detect most
examples with YOLOv6 and YOLOV7 performing relatively
better than YOLOVS. The final row of Fig. 5 shows an example
of detection of large objects. In this example, YOLOV7 is able
to detect all the large objects although one of the estimated
bounding boxes around a ship is much larger than the ground
truth bounding box. YOLOvS and YOLOV7 are unable to
detect the larger ship but YOLOvS has generated a better
bounding box to detect the smaller boat. It is noteworthy
that a very small object in the background is also detected
by YOLOVS and YOLOV7

In general, the models perform relatively well on detecting
medium to large objects but perform poorly in the detection
of small objects, particularly in difficult backgrounds. Hence,
simultaneous detection of small and large objects on images
remains a challenge even when using deep learning models
that are highly regarded in terms of object detection.

V. CONCLUSION

This paper introduces a maritime dataset for object de-
tection. The dataset contains images of multiple resolutions
captured from live harbour recordings in many places of north
Germany. The objects in the extracted images are divided
into three classes and annotated to create a dataset capable
of training by deep learning models. Following the analysis
of the dataset a selection of deep learning models are trained
on it and evaluated. As part of the future work, the dataset can
be expanded with images from more camera feeds to improve
its diversity. Increment of the dataset should help improve
the robustness of the detection systems to new scenarios.
The evaluation of the CNN models on the dataset indicates

(a) YOLOVS (b) YOLOvV6 (c) YOLOV7

() YOLOv5 (k) YOLOv6 (1) YOLOv7

Fig. 5: Example of object detection on selected images from the test dataset by the YOLO models. Cropped sections of the
entire image are shown for better visibility.

a poor performance in small object detection which should
be addressed. One of the solutions might be an increment in
the number, scale, and density of anchor boxes and initialize
them properly. On the other hand, a network can be built
which solely addresses the small objects and enhances the
features corresponding to small objects, in terms of resolution.
Additional baseline models should be experimented with and
additional modules like attention, vision transformers, and its
variants should be explored in order to improve detection
performance.

[1]

[2]
[3]

[4]

[5]
[6]

REFERENCES

T. Lin, “Labellmg,” Free Software: MIT License, 2015, [Online], Avail-
able: https://github.com/heartexlabs/labellmg. [Visited on 26. August
2023].

J. Cieslik, “COCO-dataset-explorer,” 2022, [Online], Available: https://
github.com/i008/COCO-dataset-explorer. [Visited on 26. August 2023].
T. Y. Lin et al., “Microsoft COCO: common objects in context,” in
Proceedings of the European Conference on Computer Vision, 2014,
pp. 740-755.

G. Jocker et al., “ultralytics/yolov5: v3.1 - Bug Fixes and Performance
Improvements,” Zenodo, October 2020, https://doi.org/10.5281/zenodo.
4154370.

C. Li et al., “YOLOV6: A Single-Stage Object Detection Framework for
Industrial Applications,” in ArXiv, 2209.02976, 2022.

C.-Y. Wang, A. Bochkovskiy, H.-Y. M. Liao, “YOLOvV7: Trainable bag-
of-freebies sets new state-of-the-art for real-time object detectors,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 7464-7475

https://github.com/heartexlabs/labelImg
https://github.com/i008/COCO-dataset-explorer
https://github.com/i008/COCO-dataset-explorer
https://doi.org/10.5281/zenodo.4154370
https://doi.org/10.5281/zenodo.4154370

	Introduction
	Dataset collection and labelling
	Dataset analysis
	Deep Learning based Object Detection
	Conclusion
	References

