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Abstract—Recently, drone detection has become a topic of
interest due to the widespread usage of drones in various applica-
tions, particularly for recreational purposes. Such detection tasks
are usually performed by deep learning models which require
different kinds of image datasets to be trained on. Hence, a
dataset of infrared images for drone detection is introduced in
this paper. In order to generate the dataset, videos of drones
are captured initially with multiple cameras at two different
locations. The video frames are then extracted and the drones are
annotated with the help of an annotation tool and an automated
script. A comprehensive analysis of the dataset is provided and
multiple configurations of a selection of CNN models are trained
on a fraction of the dataset. The trained models are employed
on the test dataset and their performance is evaluated.

Index Terms—Dataset, object detection, drone detection, deep
learning, convolutional neural network, image processing

I. INTRODUCTION

In recent years, the usage of drones has increased rapidly
across several industries or fields of application. They were
always used in military operations but are now widely used
for industrial and commercial applications, too. Some of the
use cases include security for law enforcement, monitoring for
rescue operations, transportation, and aerial photography for
various applications. Additionally, recreational drones are in
abundance now and flying them have been a regular occurrence
in cities. Given their gradual growth, public safety becomes
an area of concern and must be addressed. Hence, reliable and
robust methods to detect and monitor drones are developed.
An automated drone detection system can generate an alert
based on any anomalies and capture drones. Such systems
can operate based on data processed by different sensors.
Indeed, interceptor drones which are equipped with sensors
and capturing devices are already developed which are able to
detect, follow, and capture any unauthorized drones flying over
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secure areas like an airfield. However, a surveillance system
including various sensors and cameras needs to be available
in a secure zone. In this context, infrared cameras are used
as one of the sensors and they might provide better visibility
under certain conditions even if the background is noisy or
cluttered and the environmental illumination is low. Hence, a
dataset of infrared images containing drones is introduced in
this work.

While many datasets of aerial images captured by drones are
available across the internet, there is a dearth of open source
databases containing images of drones, particularly in the
infrared spectrum. Notable contributions in this area include
the work in [1] where different scenarios consisting of drones
are available as part of the Anti-UAV challenge, and in [2]
which introduces a multi sensor dataset. The dataset introduced
in this work is composed of annotated drone images captured
by two different infrared cameras of different resolutions.
Multiple drones are used during the recording and a fraction
of the images contain multiple drones unlike some datasets.
The drones are captured in front of multiple background
objects and offer a varying difficulty in terms of visibility.
The complete dataset will be publicly available in the near
future.

The drone dataset is created with the objective of developing
and training deep convolutional neural network (CNN) models
in order to integrate such models in a drone detection system.
Recently, deep learning based methods are widely used in
multiple object detection tasks since they tend to produce
excellent results [3]–[5]. Hence, the dataset is used to train
a selection of deep learning models. The following sections
provide the details of dataset generation and annotation along
with a statistical analysis of the dataset. Finally, the perfor-
mance of the models trained on the dataset is evaluated.

II. DATASET GENERATION

The dataset generation can be divided into two parts, namely
video recording and annotation of drones in the video frames.



(a) FLIR (b) InfraTec

Fig. 1: Comparison of the image resolution of both cameras:
(a) FLIR Scion OTM366 (640× 480 pixels) and (b) InfraTec
VarioCAM HD Z (1024× 768 pixels).

A. Video Recording

The dataset is constructed from drone videos captured using
two infrared cameras with different image resolutions and an
aspect ratio of 4:3 (see Fig. 1). The cameras can be seen
in Fig. 2. Firstly, a FLIR Scion OTM366 is used to record
drone videos in the infrared spectrum with a resolution of
640 × 480 pixels. Secondly, infrared videos with a higher
resolution of 1024×768 pixels are recorded using an InfraTec
VarioCAM HD Z equipped with a zoom lens (25-150 mm).
The drone videos were recorded on different days at two
different locations using both cameras simultaneously. At first,
videos were recorded on the football field of the university
campus from different perspectives and distances between 100
and 200 meters. In total, three different drones can be seen
inside these videos. In most of the videos, an Artcopter Raptor
drone is shown. The second drone in some videos is a Holybro
X500. A third smaller drone is visible in some videos, which
is a DJI Mavic Pro 2. Exemplary images recorded by the
InfraTec VarioCAM HD Z with one or two drones can be
seen in Figs. 3(a) and 3(b), respectively. As second recording
location, a small harbour was chosen due to the variety of
possible backgrounds like harbour, (industry) buildings, trees,
or trucks (see Figs. 3(c)-(f)). Here, a DJI Phantom 2 drone is
recorded. In post-processing, longer phases without a drone
are removed and the associated videos divided into several
parts. In total, seven videos are recorded by the FLIR Scion
OTM366 and five by the InfraTec VarioCAM HD Z that are
divided into nine and 14 partial videos, respectively. After the
video recording, the individual frames are extracted and saved
in JPG format.

B. Annotation

In order to use the recorded videos for training and evalu-
ation purposes, drones inside the video frames have to be la-
belled. For this purpose, the LabelImg [6] graphical annotation
tool is used. The annotations are done in the Pascal VOC [7]
format. To speed up the labelling process, a MATLAB script
is written that uses cross-correlation to determine the current
position of the drone in the vicinity of the previous position.

Fig. 2: Used infrared cameras: FLIR Scion OTM366 (left) and
InfraTec VarioCAM HD Z (right).

The resulting annotations are then manually checked and
corrected if applicable. Additionally, annotations of drones that
are barely distinguishable from the background in individual
images or are mostly outside the image are marked as difficult.
An exemplary annotation marked as difficult can be seen in
Fig. 3(f). Here, the drone is barely distinguishable from the
treetops.

III. DATASET ANALYSIS

The images and annotations of the dataset are divided
into 23 folders each, corresponding to the 23 partial videos
described above. This means that the images can be used
not only as single images for drone detection but also as
continuous video frames to perform drone tracking. In total,
the dataset consists of 66,438 images and 71,520 annotated
drones. A more detailed composition of the dataset can be seen
in Table I. The images taken with the FLIR Scion OTM366
represent about 61 % of the dataset (40,619 images), of which
again about 65 % were taken at the harbour (26,368) and the
remaining images on campus (14,251). The lower number of
25,819 images recorded by the InfraTec VarioCAM HD Z
can be explained by the unbalanced number of images on
campus (2,446) and at the harbour (23,373). This imbalance is
mainly due to the fact that the images recorded by the InfraTec
VarioCAM HD Z on the campus hardly differ due to the
required power supply during the recording and the resulting
static point of view with identical background, which is why it
was decided to annotate only a part of the images and add them
to the dataset. In addition to the number of images, Table I also
lists the number of annotated drones for each scenario. The
number of drones per image shows that, as described in Sec. II,
there are sometimes two or even three drones in one image
on the campus, so that a total of 47,193 drones are labeled on
images recorded by FLIR Scion OTM366 and 24,327 drones
on images recorded by InfraTec VarioCAM HD Z. The total
number of 2,617 images without a drone can be explained by
the fact that the videos should not be divided into parts that
are too short, despite the drone briefly disappearing from the
image or being unrecognizable. In 10,130 cases, the annotated
drone is marked as difficult because it is barely distinguishable
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Fig. 3: Exemplary images of the dataset recorded by the InfraTec VarioCAM HD Z on campus with (a) one or (b) two drones
and at the harbour with different backgrounds like (c) harbour, (d) trucks, (e) buildings, and (f) trees. Additionally, (f) shows
an annotated drone marked as difficult.

from the background or mostly outside the image. The dataset
prepared with images from FLIR Scion OTM366 and InfraTec
VarioCAM HD Z is initially divided into normal and difficult
images depending on the visibility of drones due to clutter,
occlusion, or heavy blurring. Difficult images would contain
a drone which is indistinguishable from its background due to
similar temperature or heavily blurred due to motion or during
automatic camera calibration. In this work, the relatively easy
images are selected where the drones are mostly visible by
the naked eye. It is however noteworthy that the set of normal
images do contain a substantial number of challenging images
where the drones are partially occluded/ blurred or the contrast
between the drones and background is not big.

In addition to the number of images and drones, also the
position of the drones in the images is important for an
object detector. Therefore, Figs. 4 and 5 show heatmaps of
the frequency of occurrence of the position of the annotated
drones on the individual pixels of the images separately for the
two cameras. Black pixels in the heatmaps represent positions
that are not reached by any drone. As can be seen in Fig. 4,
the drone usually remains in the centre of the image, which
can be explained by the fact that the FLIR Scion OTM366 is a
handheld device with which the responsible person followed
the drone. This means that the drone does not often appear
at the edge of the image, but the background of the image is
more variable.
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Fig. 4: Annotation heatmap of the 47,193 drones inside the
videos recorded by the FLIR Scion OTM366.

In contrast to the FLIR Scion OTM366, the InfraTec Vario-
CAM HD Z is very heavy and requires a notebook to control
it, which is why it is attached to a tripod that can be rotated
but not panned. Thus, horizontal movements of the drone can
be followed, but not the vertical movements, which means that
the drone also appears at the top and bottom of the images



TABLE I: Total number of images and annotated drones contained in the dataset separated into different cameras and locations.
Additionally, the number of drones marked as difficult is given.

Szenario
Number of

images

Number of drones per image Number of
drones

Number of
drones marked

as difficult0 1 2 3

FLIR (campus) 14,251 199 7,062 6,815 175 21,217 4,066

FLIR (harbour) 26,368 392 25,976 0 0 25,976 2,224

FLIR (total) 40,619 591 33,038 6,815 175 47,193 6,290

InfraTec (campus) 2,446 448 1,464 534 0 2,532 346

InfraTec (harbour) 23,373 1,578 21,795 0 0 21,795 3,494

InfraTec (total) 25,819 2,026 23,259 534 0 24,327 3,840

recorded by the InfraTec VarioCAM HD Z (see Fig. 5). Being
a heavy camera, the horizontal movement can also be slow
and very fast movement of the drone can sometimes be hard
to follow. The most common positions can be found in the
upper half of the picture.
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Fig. 5: Annotation heatmap of the 24,327 drones inside the
videos recorded by the InfraTec VarioCAM HD Z.

Finally, the size of the annotated drones in the images is
analysed, too. To do this, Table II lists four statistical metrics
of drone size, namely minimum, mean, median, and maximum.
The smallest drone sizes of down to 7 pixels are achieved by
drones that are partially outside the image. For both cameras,
the values of the drones on campus are notable lower than the
corresponding values of the drones at the harbour. This is due
to the considerably greater distance between the cameras and
the drone during the recordings on campus. On average, the
drones represent between 0.170 % and 0.605 % of the image.
However, these average values are strongly influenced by the
maximum drone size values, which range between 1.230 %
and 14.092 %. Therefore, the median is also added to the table.
This shows that, depending on the camera, half of the drones
cover less than 0.151 % (FLIR) or 0.231 % (InfraTec) of the

TABLE II: Size of the annotated drones contained in the
dataset separated into different cameras and locations. The im-
age size of the FLIR Scion OTM366 and InfraTec VarioCAM
HD Z is 307,200 pixels and 786,432 pixels, respectively.

Szenario
Size of drones in pixels

Min Median Mean Max

FLIR (campus)
7

( 0.002 %)
325

( 0.106 %)
590

( 0.192 %)
3,780

( 1.230 %)

FLIR (harbour)
140

( 0.046 %)
532

( 0.173 %)
1,858

( 0.605 %)
33,460

(10.892 %)

FLIR (total)
7

( 0.002 %)
464

( 0.151 %)
1,288

( 0.419 %)
33,460

(10.892 %)

InfraTec (campus)
88

( 0.011 %)
578

( 0.073 %)
1,337

( 0.170 %)
10,731

( 1.365 %)

InfraTec (harbour)
96

( 0.012 %)
1,938

( 0.246 %)
3,382

( 0.430 %)
110,825

(14.092 %)

InfraTec (total)
88

( 0.011 %)
1,820

( 0.231 %)
3,170

( 0.403 %)
110,825

(14.092 %)

images. Overall, it can be said that the dataset reflects the
reality of small drones at a further distance very well.

IV. DEEP LEARNING BASED DRONE DETECTION

In this section the FLIR and the InfraTec datasets are used
to train and evaluate the performance of three deep learning
models from the YOLO family - YOLOv5 [8], YOLOv6 [9],
and YOLOv7 [10]. The models are pre-trained on the COCO
dataset and the pre-trained weights are used to initialize the
models during training. The primary commonality between
these models is that their entire architectures can be divided
into three primary structures, namely backbone, head, and
neck.



TABLE III: Number of images split into training and test data
for FLIR Scion OTM366 and InfraTec VarioCAM HD Z.

Number of
images

FLIR InfraTec

Training 23,816 15,213

Test 13,229 4,829

The backbone is a pyramidal structure primarily composed
of convolution, batch normalization, and activation layers
and it gradually reduces the spatial resolution of the feature
maps while increasing the feature map depth. Hence, such a
structure is used to generate multi-resolution feature maps to
be processed by the next structure in the architecture. YOLOv5
[8] combines the Cross Stage Partial (CSP) Net [11] and the
Darknet from earlier YOLO versions to get the CSPDarknet53
as its backbone. At the end of the YOLOv5 backbone there
is an additional module called fast spatial pyramid pooling
(SPPF) modified from spatial pyramid pooling (SPP) module
introduced in [12]. This module aggregates feature maps
processed by parallel branches of linear and non linear filters
with activation functions. YOLOv6 [9] uses an efficient re-
parameterizable backbone called EfficientRep with the help
of module level re-parameterizable blocks (RepBlock) [13].
The behaviour of these blocks is different during training and
inference, with the goal of computational load reduction during
inference. Similar re-parameterizable modules are used in the
backbone of YOLOv7 [10] as well, where they can be merged
to more simpler modules during inference. Near the end of its
backbone, YOLOv7 introduces a modified SPP block.

The neck of such architectures is responsible to collect
and combine low and high level feature maps from selected
layers in the backbone. The structure of the neck is usually
a bottom up and a top down structure, where feature maps
of same dimensions are either concatenated or summed. In
order to increase the spatial dimensions bilinear interpolation
is usually performed in the bottom up branch of the structure.
Such a structure is called the Path Aggregation Network
(PAN) in YOLO. YOLOv5 [8] uses the CSP-PAN structure
while YOLOv6 [9] uses the Rep-PAN structure enhanced by
the presence of RepBlocks or CSPStackRepBlocks in larger
architectures. YOLOv7 [10] uses a PAN structure as well
which includes the CSP-OSA modules and RepBlocks for
efficient processing.

The head structure of such architectures contains the classi-
fication and the regression heads in order to predict the class
scores and the relative coordinates of an object location. For
classification, a form of focal loss [15] is used by the YOLO
models. For box regression, these architectures define a set of
initial anchor boxes and gradually learn the deviation required
by the appropriate anchor boxes to locate an object. The loss
function used by YOLO models is a variation of the IOU loss
[16]–[18]. Additionally, YOLO models employ an objectness
loss [8].

The models are trained separately with the FLIR and
InfraTec datasets. Initially, the FLIR images and annotations
are divided into training and test datasets. The images captured
at the harbour are used for training while the images from
the campus are used for testing. The InfraTec data is also
divided into training and test datasets where most of the
harbour images are used for training. Since the number of
campus images is relatively low, a small section of the harbour
images or images from a particular video are added to the
campus images for testing. Table III shows the division of data
into train and test set for each dataset. This division results
in 64% and 36% of FLIR images for training and testing,
respectively. In the case of InfraTec dataset, 67% and 33%
of its data are used for training and testing, respectively. The
network models are initialized with pretrained weights and
the default hyperparameters are used, except for the learning
rates and the weight decay values which are adjusted. To train
with the YOLO models, the VOC annotations are converted
to text annotations with the help of a conversion script. This
script is however modified to produce correct transformations
between coordinate systems defined in VOC and YOLO by
avoid rounding and shift errors. Each model is trained for
80 epochs with a batch size of 8 on a Nvidia RTX8000
workstation GPU.

Table IV shows the performance of the models on the FLIR
and InfraTec test datasets in terms of mean average precision
(MAPIOU=0.5, MAPIOU=0.5:0.95 ) values at different intersection
over union (IOU) thresholds and average processing time
expressed in milliseconds. It can be seen in the table that all
networks perform reasonably well on the test datasets. To train
on the FLIR dataset, the variants YOLOv5m, YOLOv6m, and
YOLOv7 are chosen where ’m’ denotes medium. Similarly,
the medium variants of YOLOv5 and YOLOv6 and the
YOLOv7W6 are selected for training with the InfraTec dataset.
YOLOv5 has the least number of parameters and performs
well on the FLIR test images. YOLOv7 performs relatively
good as well and requires the least average processing time per
image. With the InfraTec test dataset, YOLOv6 produces the
best results in terms of MAP scores while YOLOv7 produces
the fastest inference. The capacity of reparameterization in
YOLOv6 and YOLOv7 makes the models usually faster at
inference time in spite of having more parameters compared to
YOLOv5. It can also be observed that the results obtained with
the InfraTec dataset is better than the results with the FLIR
dataset. This might be attributed to the fact that the InfraTec
dataset has some images from the harbour in its training and
test dataset, while the FLIR test set has no images from the
harbour.

A selection of detection examples is shown in Fig. 6. The
red boxes in the images denote ground truth labels and the
green boxes along with the confidence scores denote detec-
tions. An example frame from the campus captured by the
InfraTec VarioCAM HD Z is shown in the first row. As shown
in Fig. 6(a), YOLOv5 is able to detect the bigger drone but it
is unable to detect the smaller drone. It also makes a false
detection with a relatively high confidence score. YOLOv7



TABLE IV: MAP results of different object detection models for FLIR and InfraTec dataset.

Dataset Model
Number of
parameters

MAP0.5:0.95 MAP0.5
Avg. Time / Image

in ms

FLIR
(640×640)

YOLO-v5m 20.85 M 0.46 0.78 19.40

YOLO-v6m 34.80 M 0.42 0.64 20.43

YOLO-v7 36.50 M 0.43 0.82 18.70

InfraTec
(1024×1024)

YOLO-v5m6 35.25 M 0.51 0.81 46.00

YOLO-v6m6 79.53 M 0.60 0.89 33.51

YOLO-v7W6 80.90 M 0.55 0.85 24.30

is able to detect the bigger drone but it misses the smaller
drone as well (see Fig. 6(c)). Only YOLOv6 is able to detect
both drones in this example, as shown in Fig. 6(b). A similar
behaviour can be noticed in the examples from the second row
of Fig. 6 which is captured by the InfraTec VarioCAM HD Z
at the harbour. As shown in Figs. 6(d) and 6(f) respectively,
YOLOv5 and YOLOv7 are able to detect the actual drone
while wrongly detecting another drone and producing a false
positive each. YOLOv6 on the other hand performs better
in this example (see Fig. 6(e)). Indeed, the performance of
YOLOv6 is generally better compared to the other models and
this behaviour is reflected in the results shown in Table IV.

The third and fourth rows of Fig. 6 show example images
from the campus captured by the FLIR Scion OTM366. It can
be seen in Figs. 6(g) and 6(i), that YOLOv5 and YOLOv7
are able to detect the drones in a relatively easy example.
However, YOLOv6 is unable to detect the smaller drone, as
shown in Fig. 6(h). In the last example, YOLOv5 and YOLOv6
are unable to detect the actual drone while making additional
wrong detections (see Figs. 6(j) and 6(k)). YOLOv7 is able to
detect the actual drone but also makes a false detection (see
Fig. 6(l)). Notably, the drone in the middle which is detected
by all the models is actually a drone, but is excluded from
the datasets as part of the difficult examples. The general
performance of the models as shown in Table IV is reflected
in many such examples, with YOLOv6 being underwhelming.
In general, the models behave well when the drone is well
visible and the background is less noisy. However, there are
occasional drops in detection due to sudden drop in confidence
scores which leads to discontinuous tracking by all of the
models. Such behaviour leads to a lack of robustness and will
be addressed in the future.

V. CONCLUSION

In this work, a dataset of infrared drone images is introduced
and described. The images are captured by two cameras of
different resolutions at two different locations. The images are
annotated in a hybrid approach and the ground truth labels
are created in order to train deep learning models. Three
such pre-trained models from the YOLO family are trained on
the dataset and their performance is evaluated. In the future,
the dataset will be expanded and more deep learning models
should be trained. A dataset should also be created which

contains both infrared and RGB images of the same scenery
and the baseline models should be retrained on it to yield better
results. Images of diverse nature and from different locations
can also help extend the number of classes for object detection
apart from drone. Additionally, the baseline models can be
improved by introducing additional modules and data pre-
processing methods. Model architectures can be changed so
that they can process images of rectangular shapes instead of a
square image, thus requiring no padding and possibly reducing
the number of operations. Introduction of recursion, memory
or transformers in such models can improve the robustness and
address the problem of discontinuity in detection, making them
suitable for tracking. Finally, an autonomous drone detection
system will be built to detect and track drones.
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